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Proper time, ideal clocks, and boosts are well understood classically, but subtleties arise in quantum
physics. We show that quantum clocks set in motion via momentum boosts do not witness classical time
dilation. However, using velocity boosts we find the ideal behavior in both cases, where the quantum clock
and classical observer are set in motion. Without internal state-dependent forces additional effects arise. As
such, we derive observed frequency shifts in ion trap atomic clocks, indicating a small additional shift, and
also show the emergence of nonideal behavior in a theoretical clock model.
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Ideal clocks and proper time are key concepts in special
and general relativity [1]. Full understanding of the union
between relativity and quantum mechanics must include
how these ideas extend to the quantum realm. Recent work
in this area can broadly be divided by whether the quantum
clocks follow classical or quantum trajectories.
Adopting the former approach [2–5] enables the uti-

lization of techniques from quantum field theory in curved
spacetime. In particular, this has allowed explorations into
consequences of the Unruh effect [6] and applications of
techniques from relativistic quantum metrology [7,8]. On
the other hand, for quantum clocks following quantum
mechanical trajectories [9–19], most progress has been
made investigating connections between proper time and
mass superpositions [20]. This has necessitated the rejec-
tion of the Bargmann mass superselection rule [21], on the
grounds that our Universe is not Galilean. Notably, this
paradigm was used to investigate ideas for intrinsic time
dilation decoherence caused by gravity [10].
In this Letter, we follow the second approach, where the

clock’smotion is describedquantummechanically.We show
that a quantum clock set into motion by a force that does not
depend on the internal state is not witnessing classical time
dilation. This is because quantum clocks require coherence
in some nondegenerate energy states [22,23], but the inertial
mass of this energy means that assigning an identical
momentum to each branch of the superposition does not
correspond to a well-defined velocity. We therefore show
that momentum boosts lead to a nonclassical dilation due to
the lack of a unique Lorentz factor. On the other hand, by
suitably coupling the motional and internal degrees of
freedom, one can apply a velocity boost that exactly recovers
the expected classical time dilation results for the “twin
paradox,” in both cases where the observer and the quantum
clock are, respectively, the ones set in motion.
We start from a Hamiltonian modified to account for the

inertial mass of internal energy. We then consider sequen-
ces of appropriately centered boosts and evolution

operators to derive the different possible clock behaviors
in a twin paradox scenario. From the classical observer’s
frame, we show that the difference between the classical
observer and quantum clock being set in motion is captured
by translation operators, and that it is the transformation
under translation operators that enables the velocity boost
to describe both situations. We demonstrate how these
translation operators can be understood via considering the
placement of the origin for the required potentials. In
addition, we show that considering the velocity kick as the
classical observer changing frames immediately tells us
that entanglement is frame dependent and demonstrate
consistency with the equivalence principle. We highlight
that without an internal state-dependent force one should
expect additional effects. We demonstrate this for fre-
quency shifts in ion traps, predicting the already observed
shifts and an additional smaller shift. We also analyze the
effect on a Salecker-Wigner-Peres clock [24,25], finding
nonideal clock behavior.
Modified Hamiltonian.—We begin by presenting the

simplest argument for the modified Hamiltonian. The
modification was introduced and used to study quantum
mechanical proper time [9] and has also been shown to
resolve paradoxes in quantum optics [26,27]. For a free
composite particle of mass M, the nonrelativistic
Hamiltonian will consist of a kinetic energy term
p2=2M and an internal energy term H0. However, the
internal energy should contribute to the inertial mass since
special relativity dictates that energy and inertial mass are
equivalent. This leads to M ¼ mþH0=c2, where we take
m as the rest mass of the particle in its internal energy
ground state j0i, and set H0j0i ¼ 0. Thus, we have

H ¼ p2

2M
þH0;

¼ p2

2m
þH0

�
1 −

p2

2mMc2

�
: ð1Þ
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To arrive at the second line, we have used
1=ðxþ yÞ ¼ 1=x − y=xðxþ yÞ. Note that since M is
now operator valued, there is potential for ambiguity with
operator ordering. However, if the internal Hamiltonian
commutes with the total momentum ½H0; p� ¼ 0, then
½M−1; p� ¼ 0. Fully accounting for relativity would strictly
imply that the internal degrees of freedom should be
described by a relativistic wave equation (or a quantum
field theory). However the approach here is that, regardless
of the formalism, the effect on the center of mass dynamics
should only be via a mass change, otherwise we could not
claim that energy and inertial mass are equivalent.
This Hamiltonian is often expanded in H0=mc2 neglect-

ing higher order terms [10,27]. It is then tempting to claim
that ½1 − ðp2=2m2c2Þ� represents our familiar notion of
time dilation; however, this is not correct, as will be shown
later. It is also important to emphasize that we shall
always be working in the limit where the energy E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þM2c4

p
is approximated by E ¼ p2=2M þMc2. In

words, one can consider the regime we utilize as one where
the mechanics can be treated in a “Newtonian” sense, but
the rest mass of the internal energy is now accounted for.
On a technical level, one must appreciate (as noted in [13])
that there are two relevant small quantities: H0=mc2 and
p2=m2c2, where the first relates to the internal degrees of
freedom and the second can be viewed as a motional v2=c2

term (note p2=m2c2 > p2=M2c2). It is therefore not suffi-
cient to merely think of approximations in terms of how
many factors of 1=c2 are present. One can consider the
regime where H0=mc2 ≪ 1, but H0=mc2 ≫ p2=m2c2.
With this in mind, one arrives at Eq. (1) (plus ground
state rest mass energy) by expanding the full relativistic
energy E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2c4 þ p2c2

p
¼ γMc2, neglecting terms of

Oðp4=m4c4Þ in the Lorentz factor while retaining the
H0=mc2 terms and translating the zero of energy by
mc2. Note that, in practice, the order of H0=mc2 terms
kept would be dictated by the physical system under
consideration and depends on the integer n for which
ðH0=mc2Þn ≫ p2=m2c2. However, as will become appar-
ent, it will prove more straightforward for our initial
theoretical study to work with the untruncated
ð1þH0=mc2Þ−1. We shall denote the unitary evolution
generated by Eq. (1) over time t as UðtÞ.
Different boosts.—We now explore the consequences of

the modified Hamiltonian. Time is a complex topic in
quantum mechanics [28,29], but here we shall simply take
the internal state (HamiltonianH0) to define some quantum
clock and consider the situation where it is boosted away
and back, then measured to observe the motion’s effect on
the clock. To do this, we use the following sequence of
operations: first, we apply some boost operator to the
particle and let it freely evolve for some time t, then at a
shifted position we apply the inverse boost twice and let it
evolve for another time t, and finally we apply the original

boost. Note the magnitude of all boosts must be chosen
such that the state is kept within the approximation regime
of our Hamiltonian. We initially work with the standard
quantum mechanical momentum boost, centered at the
origin, written as

BpðpbÞ≡ eipbx=ℏ: ð2Þ

This acts on momentum eigenstates as BpðpbÞjpi ¼
jpþ pbi. This represents the physical situation typically
considered for use in the laboratory [30], with no internal
state dependence as per the potentials typically used to
move quantum systems (e.g., an ion moved via an
electromagnetic potential).
Using this boost, the translation operator

Tðpbt=mÞ ¼ e−ippbt=mℏ, and the free evolution under the
Hamiltonian of Eq. (1), we have

BpðpbÞUðtÞTðpbt=mÞBpð−2pbÞTð−pbt=mÞUðtÞBpðpbÞ
¼e−ði2t=ℏÞðp2=2MÞeð2it=ℏÞðp

2
b=2mÞe−ð2it=ℏÞH0ð1−p2

b=2mMc2Þ: ð3Þ

The first exponential term is the unaltered motional
evolution of the state that we would expect if we had
not applied any of the boosts. This term has no pb-
dependent relativistic corrections, which is not surprising
since the adopted formalism does not include the relevant
relativistic motional terms. The second term is a global
phase that is connected to the choice of the translation
operators, discussed in detail below. However, it is the final
term that captures the effect on the evolution of the internal
state and therefore is our primary focus.
The third exponential term in Eq. (3) has the internal

Hamiltonian multiplied by a factor ½1 − ðp2
b=2mMc2Þ� that

is less than unity. This is precisely the factor we would get
by considering Eq. (1) acting on a momentum eigenstate
jpbi. We see that, if we have some coherence in the internal
state and are using it as a clock, then it appears that the
clock is running slower. Note that it is not dilated by a
constant inverse Lorentz factor as in classical relativity. We
can see why this is so by asking what Lorentz factor we
would expect. The clock has been given a momentum pb,
but because our clock is in a superposition of energies En,
we also have a superposition of different masses
Mn ¼ mþ En=c2. Hence, we can write various velocities
and thus Lorentz factors. For example, the N single shot

values γn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

b=M
2
nc2

q
, or the expectation value of an

operator hγi. Furthermore, Eq. (3) indicates that none of
these is correct. Instead the dilation of the phase factor
between any two branches n, m is 1 − p2

f=2MnMmc2, and
so is always bounded by the single shot inverse Lorentz
factors for the individual branches. We, in particular, note
that this is not equivalent to what one would expect from
the analogous classical mixture of Lorentz factors (see
Supplemental Material [31] for details).
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Once we appreciate these problems, we can also see that
there is ambiguity in the translation operations. It is natural
to center the boost back at a distance from the origin that is
equal to the relative velocity imparted multiplied by the
time it has freely evolved, but if there are multiple
velocities, then there are multiple such distances. The
clock will have been moved by vt ¼ ðpb=MÞt [this can
be seen in the boost sequence Bpð−pbÞUðtÞBpðpbÞ, which
generates the position shift operator e−ðit=ℏÞðppb=MÞ, together
with the exponential of a kinetic term]. Therefore, each
internal energy defines the shift pbt=ðmþ En=c2Þ, so we
could justifiably choose to use Tðpbt=ðmþ En=c2Þ for any
of the occupied n. This would make the second exponential
term in Eq. (3) become e−it=ℏðp

2
b=2m−p2

b=ðmþEn=c2ÞÞ, but as this
is just altering a global phase, it does not affect the clock.
Finally, we point out that even working to first order

in H0=mc2 we get the displacement operator
e−it=ℏðp̂pb=mÞð1−H0=mc2Þ, which is still dependent on the
internal state. This is because, unlike the Lorentz factors,
the velocities imparted on the different masses are still
disparate at this level of approximation. Given sufficient
time, and some reasonable localization, the different
branches of the clock could, in principle, become com-
pletely spatially separate, which is clearly not in keeping
with an interpretation that to this level of approximation we
can view this as a clock moving along a single trajectory.
Note that when we move it away and back (as per usual in a
twin paradox scenario), then we can cancel the shift effects
and therefore not notice, but that does not remove the clear
issue with the single trajectory interpretation. This shows
that we cannot avoid the conceptual problems by simply
working to lower order in H0=mc2.
In order to solve the above problems, we instead use the

modified boost operator

BvðvbÞ≡ eiðmþH0=c2Þvbx=ℏ: ð4Þ

The motivation for this is clear: we are trying to define a
unique velocity and thereby a unique Lorentz factor. One
can derive its form in the relevant nonrelativistic limit (see
Supplemental Material [31] for details) and also relate it to
the extended Galilean boost Gðv; tÞ ¼ eivðMx−tpÞ=ℏ, where
M is operator valued via Gðv; tÞ ¼ UðtÞBvðvÞU†ðtÞ. The
position shift for the clock is now uniquely defined to be
vbt, and using this we write

BvðvbÞUðtÞTðvbtÞBvð−2vbÞTð−vbtÞUðtÞBvðvbÞ
¼ e−2it=ℏðp2=2MÞe2it=ℏðmv2b=2Þe−ð2it=ℏÞH0ð1−v2b=2c2Þ: ð5Þ

As before, the first term is the unaltered motional evolution
and the second term is a global phase. It is the third term
that interests us. From this we see that the clock has run
slower by the inverse of the classical Lorentz factor

γ−1 ≈ ½1 − ðv2b=2c2Þ�. This is exactly as required for
classical time dilation.
We can go further and consider the situation where the

classical observer is the one that is set into motion. This
means that the boosts must all be centered at the origin,
which gives us

Bvð−vbÞUðtÞBvð2vbÞUðtÞBvð−vbÞ
¼ e−2it=ℏðp2=2MÞe−2it=ℏðmv2b=2Þe−ð2it=ℏÞH0ð1þv2b=2c

2Þ: ð6Þ

Here the quantum clock is running faster by the classical
Lorentz factor γ ≈ ð1þ v2b=2c

2Þ. This is again as expected,
as the classical observer is moving so their clock runs
slower. It is satisfying and encouraging that the modified
Hamiltonian produces the correct solution to the twin
paradox when we use the velocity boost. The key difference
in the two cases is caused by the manner in which
the velocity boost transforms under translations
T−1ðsÞBvðvbÞTðsÞ ¼ eiðmþH0=c2Þvbs=ℏBvðvbÞ. Note that we
cannot have the same interpretation with momentum boosts
due to the fact that a classical observer cannot move in a
superposition of velocities.
It is worth a further comment here on the motional term

e−ð2it=ℏÞðp2=2MÞ. As stated above, this has been left unaf-
fected by the boosting, which is due to the adopted
approximations. The full relativistic algebra indicates that
a correction term e�ð2it=ℏÞðp2v2b=4Mc2Þ is missing. To obtain a
fully consistent regime for these equations, one requires
this term to approximate the identity, thus restricting the
wave packet momentum spread and time t.
An immediate consequence of using the velocity boost is

the fact that frame changes alter the entanglement between
the motional and internal degrees of freedom. Consider
BvðvbÞjpið1=

ffiffiffi
2

p Þðj0i þ j1iÞ ¼ ð1= ffiffiffi
2

p Þðjp þ M0vbij0iþ
jp þ M1vbij1iÞ. The internal and motional states are
separable and maximally entangled for the nonboosted
and boosted frames, respectively. Similar behavior has been
demonstrated for internal spin degrees of freedom [33–36],
where the entanglement entropy can change under Lorentz
transformations [35], by virtue of Wigner rotations.
Additionally, by considering the classical observer moving,
one can show consistency with the equivalence principle.
We take fixed acceleration a, for time t broken into n time
steps δt ¼ t=n. For a single time step δt, we apply a boost
BvðaδtÞ and the evolution UðδtÞ. This gives the unitary
½UðδtÞBvðaδtÞ�n, for which we take n → ∞, and reverse the
Trotter expansion [37] to arrive at a new unitary, which
defines the Hamiltonian in the accelerating frame as
H ¼ p2=2M þH0 þ aMx. This agrees with the result
from an alternative derivation for the accelerating frame’s
Hamiltonian [38] and, importantly, is the same form as
Hamiltonians to describe the composite particle in a
gravitational potential [9–12]. As a final point, we note
the case of the observer moving was examined in a different
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manner by Greenberger [20] (see Supplemental Material
[31] for details).
Hamiltonian description of translations.—The transla-

tion operators play a key role in the above. To better
understand them, we can consider the Hamiltonians neces-
sary to enact the boosts on the state. We start with the
velocity case.
Consider classical observers Alice and Bob at rest in

each other’s frames, separated by a distance vbt. Alice
initially holds a quantum clock and she sends it to Bob by
applying the potential −αðmþH0=c2Þx for a short time Δt
such that the full Hamiltonian in this time is

H ¼ p2

2M
þH0 − αðmþH0=c2Þx: ð7Þ

We choose α large and Δt small with αΔt ¼ vb, such that
the first two terms are irrelevant and we effectively
generate UðΔtÞ ¼ eiðmþH0=c2Þvbx=ℏ.
After time t evolving under the free Hamiltonian, the

clock reaches Bob, who applies a potential to send it
back. Viewed from Alice’s frame this potential is
þ2αðmþH0=c2Þðx − vbtÞ. So the full Hamiltonian is

H ¼ p2

2M
þH0 þ 2αðmþH0=c2Þðx − vbtÞ: ð8Þ

This means that the operator generated in the appropriate
limit is

e−2iðmþH0=c2Þðx−vbtÞ=ℏ ¼ TðvbtÞBvð−2vbÞTð−vbtÞ: ð9Þ

One can do the same thing for the momentum boosts but
there is now an extra subtlety. Namely, that we do not have
a uniquely defined position to center Bob’s potential
from, but as we can see from TðLÞBpð−2pbÞTð−LÞ ¼
e−2ipbðx−LÞ, this only alters a global phase. However, this is
only true if we insist on a uniquely defined position shift. It
is at least formally interesting to note that, if we allow for
the positioning of Bob’s boost back to be dependent on the
internal state, such that the translation operator is
Tðpbt=MÞ, then we find the internal state evolution
multiplied by ð1þ p2

b=2mMc2Þ. So the clock runs faster,
analogously to the boosted classical observer case, but
again not by a relevant classical Lorentz factor. It may be
that this approach has some interpretation in the emerging
topic of quantum reference frames [39].
The nonclassical behavior.—We have shown the veloc-

ity boost is the relevant operator when dealing with
questions of classical proper time for quantum clocks.
However, setting a clock in motion in this manner requires
an entangling force that couples the internal and motional
degrees of freedom, but for physical situations this is often
not the case. Under these circumstances, the momentum
boost behavior is more relevant. There has been an

experimental proposal [18] to use a trapped single electron
to test for interference effects caused by the Hamiltonian of
Eq. (1). Here we take a different direction by considering
trapped ion optical atomic clock frequency shifts and
arguing that they already provide corroboration for the
modified Hamiltonian and potentially could provide more.
First we outline the basic operation (see [40] for a

review). An ion is trapped in a harmonic potential with trap
frequency ωm, and the clock reference frequency is
obtained by tuning a laser to an electronic transition
frequency ω0 of the ion. The laser frequency is varied to
maximize the probability of exciting a transition, which
standard quantum mechanics predicts will occur when
ωl ≈ ω0. However, with relativity, the ion’s motion will
lead to a dilation effect, which manifests in a frequency
shift of the transition. The common approach for incorpo-
rating this is to apply the classical time dilation formula,
substituting the expectation value of the momentum
squared to give ωl ≈ ω0ð1 − hp̂2i=2m2c2Þ. This is found
to be in-line with experiment [41].
The approach works well, however, it is essentially a

semiclassical analysis, because we are making no relativ-
istic correction to the quantum mechanical description. A
more natural method is to start from the Hamiltonian of
Eq. (1). The interaction of an ion with a monochromatic
classical laser field is a well-documented problem [42], and
adapting the standard approach, we derive a differential
equation to describe the time evolution (see Supplemental
Material [31] for details). Under simplifying approxima-
tions, we find that the frequency shift for an ion initially in
the nth Fock state is

ωl ≈ ω0

�
1 −

ℏωmðnþ 1
2
Þ

2mc2
þ ℏω0ℏωmðnþ 1

2
Þ

2ðmc2Þ2
�
: ð10Þ

The first correction term is the same type of shift studied in
[18] and is broadly in agreement with the semiclassical
argument and the observations [41]. This provides empiri-
cal evidence for the modified Hamiltonian, since it gives a
quantum mechanical description for a real world experi-
ment up to the level of precision achieved. The second
correction term captures the additional behavior that we
now expect, however, it should be taken as illustrative
rather than a concrete experimental prediction. Here we
have not considered other effects that could be relevant at
this precision, such as the higher order p2=M2c2 term. To
predict such new shifts one should perform full simula-
tions, with all relevant physics, and using experimental
parameters. However, we can make estimates based on the
terms above and for a typical experiment the new shift
would be a factor of ℏω0=mc2 ∼ 10−10 smaller than that
observed. Thus, state of the art experiments are far from
observing these effects. While this is discouraging, the key
point is that the modified Hamiltonian predicts effects that
could lead to new observable consequences.
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The nonclassical dilation can be physically relevant,
so it is interesting to consider its effect on proposed
theoretical clock models. We do this for the Salecker-
Wigner-Peres (SWP) definition of a quantum clock [24,25].
Taking the internal energy Hilbert space to be spanned by
N nondegenerate energy eigenstates jni, n ¼ 0; 1;
…; N − 1, with equally spaced eigenvalues such that
H0 ¼

P
n nℏω0jnihnj. The SWP clock is then defined

by the N orthogonal states jwki ¼
ð1= ffiffiffiffi

N
p ÞPN−1

n¼0 e
−2πikn=N jni. Initialized in jw0i, the clock

will pass through successive states jwki at external times
tk ¼ kτ, where τ ¼ 2π=Nω0. One then defines a clock
operator Tc ¼ τ

P
k kjwkihwkj, with variance ðΔTcÞ2 ¼ 0

at times tk, and ðΔTcÞ2 ≠ 0 in between.
For this setup, we see that the ideal clock behavior is

broken by the nonlinear H0 dependence in the nonclassical
dilation. There are no longer well-defined ticks with
ðΔTcÞ2 ¼ 0. One can consider defining effective ticks as
points of minimum ðΔTcÞ2. We numerically find that the
time between these new ticks in the large N limit can be
approximated analytically utilizing time-energy uncertainty
relations (details in the Supplemental Material [31]).
Conclusions.—We have shown that there are conceptual

problems with viewing momentum boosts as leading to
quantum clocks witnessing a classical time dilation. We
found that the velocity boost recovers the expected classical
behavior and demonstrated the importance of translation
operators in distinguishing the cases of the clock or the
observer being set in motion. We showed how this can be
understood by considering the Hamiltonians necessary to
realize the boosts on the quantum clock. The velocity boost
enables simple demonstrations of the frame dependence of
entanglement between internal and motional degrees of
freedom and consistency with the gravitational equivalence
principle. We emphasized that moving the quantum clock
without an internal state-dependent force should present
additional effects. From a practical point of view, we
illustrated this with ion trap atomic clocks, finding that the
formalism predicts the already observed relativistic fre-
quency shift and indicates an additional small correction.
Wealso considered the effects of the nonclassical dilation for
the SWP clock, finding it removes the ideal clock behavior.
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