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A general thermodynamic framework is presented for open quantum systems in fixed contact with a
thermal reservoir. The first and second law are obtained for arbitrary system-reservoir coupling strengths,
and including both factorized and correlated initial conditions. The thermodynamic properties are adapted
to the generally strong coupling regime, approaching the ones defined for equilibrium, and their standard
weak-coupling counterparts as appropriate limits. Moreover, they can be inferred from measurements
involving only system observables. Finally, a thermodynamic signature of non-Markovianity is formulated
in the form of a negative entropy production rate.

DOI: 10.1103/PhysRevLett.124.160601

Introduction.—The statement of thermodynamics laws at
the quantum level is an open and fundamental task.
However, given its practical implications in areas such
as quantum transport [1–3], quantum information [4–6], or
AMO physics [7–16], the motivation is far from being only
fundamental. For these reasons, the field of quantum
thermodynamics has emerged lately attracting extensive
attention [17,18].
A particularly interesting problem concerns the formu-

lation of a universally valid nonequilibrium thermodynamic
framework for open quantum systems in contact with
thermal reservoirs [19]. By “reservoir” we understand a
quantum system with an infinitely large, continuous num-
ber of degrees of freedom, and a “thermal reservoir” is the
one which initially remains in its canonical Gibbs state
ρRð0Þ ¼ ρR;β ¼ expð−βHRÞ=ZR. Here, β ¼ 1=ðkBTÞ is the
inverse temperature (with T temperature and kB Boltzmann
constant), HR is the reservoir Hamiltonian and ZR ¼
Tr½expð−βHRÞ� is its partition function. Strictly speaking,
since ZR becomes infinity for an infinitely large, continu-
ous, system, the density matrix ρR;β is ill defined in such a
case. The rigorous definition of this state is given as a
functional in the algebraic formulation of quantummechan-
ics [20]. However, we shall write ρR;β with a formal
meaning. If the interaction Hamiltonian between system
and reservoir is denoted by V, the total Hamiltonian reads

HðtÞ ¼ HSðtÞ þHR þ V; ð1Þ

where HSðtÞ is a generally time-dependent system
Hamiltonian (unless otherwise stated we shall adopt the
Schrödinger picture throughout the text). Considering the
system and thermal reservoir initially in the product state

ρSRð0Þ ¼ ρSð0Þ ⊗ ρR;β; ð2Þ

after some time interval t, the state changes to

ρSRðtÞ ¼ Uðt; 0ÞρSð0Þ ⊗ ρR;βU†ðt; 0Þ; ð3Þ

with the evolution familyUðt;0Þ≔T exp½−ði=ℏÞR t
0HðsÞds�.

This dynamics induces a time evolution in the open system S
given by a dynamical map Λt, i.e., a family of completely
positive and trace-preserving (CPTP) maps [21–23],
ρSð0Þ → ρSðtÞ ¼ ΛtρSð0Þ ≔ TrR½ρSRðtÞ�. We shall address
the derivation of the thermodynamics laws for the open
quantum system S in this situation.
Weak coupling considerations.—The first step is the

identification of system thermodynamic variables. Since
the global SR system is isolated, any energy change (which
only occurs for time-dependent Hamiltonians) must be
identified with work W. Thus, the power is given by

_WðtÞ≔ dhHðtÞi
dt

¼Tr½ _HSðtÞρSRðtÞ� ¼Tr½ _HSðtÞρSðtÞ�; ð4Þ

where the overdot notation indicates time derivatives. This
work is assumed to be performed by or applied to the
system, as it only depends on system variables.
Internal energy and heat are magnitudes more difficult to

be properly defined. However, this task can be successfully
accomplished in the limit of small interaction V. In such
a case, the expectation value of the total Hamiltonian
becomes hHðtÞi ≃ hHSðtÞi þ hHRi, and so hHSðtÞi can
be unequivocally identified with the system internal energy
EU at time t [24]. Then, taking the time derivative one
obtains the first law in the form of

dEðwÞ
U ðtÞ
dt

¼ dhHSðtÞi
dt

¼ _WðtÞ þ _QðwÞðtÞ; ð5Þ
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with _QðwÞðtÞ ≔ Tr½HSðtÞ_ρSðtÞ� the heat flow in the weak
coupling approximation.
The second law can also be obtained in theweak coupling

limit. For a slow time-varying HSðtÞ compared to the
relaxation time of the reservoir [25], the dynamical map
can be rigorously approximated byΛt ¼ T exp½R t

0 LDðsÞds�
where LDðtÞ is the time-dependent “Davies generator” [26]
with the (time-dependent) GKLS form [27,28], so that Λt is
CPTP [21–23]. Thanks to this, and applying a series of
results [19,29] based on the monotonicity of the quantum
relative entropy Dðρ1kρ2Þ ≔ Trðρ1 log ρ1Þ − Trðρ1 log ρ2Þ
under a CPTP map Λ [30,31],

D½Λðρ1ÞkΛðρ2Þ� ≤ Dðρ1kρ2Þ; ð6Þ
it is possible to obtain the second law in the differential
form ðd=dtÞSvNðtÞ − β _QðwÞðtÞ ≥ 0, where SvNðtÞ ≔
−kBTr½ρSðtÞ log ρSðtÞ� is the (thermodynamic) von
Neumann entropy. This can be extended to arbitrarily fast
periodic drivings [19,32,33]. Recently, other drivings have
also been analyzed [34].
Out of the weak coupling regime, several attempts have

been performed to formulate a thermodynamic framework,
e.g., Refs. [35–46]. A possible approach [35,39,40] defines
_QðeÞðtÞ ≔ −Tr½HRðtÞ_ρRðtÞ� and EðeÞ

U ðtÞ ≔ Trf½HSðtÞ þ
V�ρSRðtÞg as heat and system internal energy, respectively.
Here, the superscript “e” stands for “external” as, in this
approach, those variables are actually external properties,
defined in terms of reservoir mean values. This is undesir-
able from the open system theory, and implies the exper-
imental difficulty of controlling the state of the reservoir
in order to make thermodynamic measurements.
Nevertheless, it is possible to obtain the first and the
second law in the integrated form ΔSvNðtÞ − βQðeÞðtÞ ≥ 0
for a “finite size” reservoir [35,39,40]. Although they are
also expected to hold for true (infinite) reservoirs as an
appropriate limit, one should be careful at this point in the
continuous limit because quantities such as the reservoir
von Neumann entropy are ill defined. On the other hand, as
we shall see in a moment, these definitions do not fit with
the expected situation once the system reaches thermal
equilibrium. In order to overcome these difficulties an
alternative approach is needed.
Equilibrium considerations.—Let us assume for a

moment that HS is time independent in Eq. (1). There is
a vast literature showing that system and reservoir thermal-
ize after some transient time interval [37,47–60]. In
particular, under certain regularity conditions on reservoirs
and couplings, it can be rigorously proven [47–54] that

ρSRðtÞ ¼ e−iHt=ℏρSð0Þ ⊗ ρR;βeiHt=ℏ →
t→∞ e−βH

ZSR
: ð7Þ

This convergence requires R to be an infinitely large
continuum, and this implies ZSR ¼ Tr½expð−βHÞ� to be

singular, as commented. Thus, the limit in Eq. (7) must be
understood in functional sense [61]. Thermalization sug-
gests that any suitable choice of nonequilibrium system
internal energy must fit the system internal energy obtained
from the global canonical state ρSR;β ¼ Z−1

SR expð−βHÞ,
once equilibration is reached (perhaps asymptotically).
That equilibrium thermal internal energy has been studied
both in the classical [62–67] and in the quantum
[44,63,68,69] realm. The method is based on the definition
of the “Hamiltonian of mean force” H�

S by the equation

H�
S ≔ −β−1 log

��
ZSR

ZR

�
TrRðρSR;βÞ

�
; ð8Þ

so that the reduced system state at thermal equilibrium is
given formally by a Gibbs state for H�

S,

ρS;eq ≔ TrRðρSR;βÞ ¼
e−βH

�
S

Z�
S

; ð9Þ

with Z�
S ¼ ZSR=ZR. Now, one requires the fulfillment of

standard equilibrium relations such us F ¼ −β−1 logZS,
EU ¼ F þ ∂βF, S ¼ β2∂βF, and F ¼ EU − TS, for Z�

S
playing the role of ZS ¼ Tr½expð−βHSÞ� (Z�

S approaches
ZS for vanishing coupling). Since the Hamiltonian of mean
force (8) is a function of β, H�

SðβÞ, this leads to the
following redefinitions of internal and free energy and
thermodynamic entropy at equilibrium (units of kB ¼ 1):

E�
U ≔ TrfρS;eq½H�

SðβÞ þ β∂βH�
SðβÞ�g; ð10Þ

F� ≔ TrfρS;eq½H�
SðβÞ þ β−1 log ρS;eq�g; ð11Þ

S� ≔ TrfρS;eq½− log ρS;eq þ β2∂βH�
SðβÞ�g: ð12Þ

A possible generalization of Eqs. (10)–(12) for nonequili-
brium is given by the straightforward substitution ρS;eq →
ρSðtÞ [44,65,67]. This choice satisfies thermodynamic laws
for some restricted class of initial states [44], but fails for
the general initial condition (2) [70]. Therefore, we shall
take a different route.
Time-independent system Hamiltonians.—Let us con-

sider first a time-independent HS. Typically, TrRðVρR;βÞ ¼
0 (otherwise this can always be achieved by a convenient
redefinition of system and interaction Hamiltonians, see
e.g., [23]), and so under the initial condition (2) we have

hHð0Þi ¼ Tr½HρSð0Þ⊗ ρR;β� ¼ Tr½HSρSð0Þ� þTr½HRρR;β�:
ð13Þ

The first term of the right-hand side of Eq. (13) can be
unambiguously identified with the system internal energy
at t ¼ 0. In addition, because of Eq. (7), the internal energy
must become equivalent to Eq. (10) for asymptotic times.
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Strictly speaking, since only relative differences appear in
the thermodynamic laws, this equivalence must hold up to
some time-independent additive constant (which observes
EU ¼ F þ ∂βF, S ¼ β2∂βF, F ¼ EU − TS at thermal equi-
librium). The third property we desire for the choice of
internal energy is that it should be given just in terms of the
reduced system dynamics. In a similar spirit to Ref. [45], all
these properties are satisfied by defining

H⊛
S ðt; βÞ ≔ −β−1 log½Λte−βHS �; ð14Þ

such that Λte−βHS ¼ e−βH
⊛
S ðt;βÞ and, in parallelism with

Eqs. (10)–(12),

EUðtÞ ≔ TrfρSðtÞ½H⊛
S ðt; βÞ þ β∂βH

⊛
S ðt; βÞ�g; ð15Þ

FðtÞ ≔ TrfρSðtÞ½H⊛
S ðt; βÞ þ β−1 log ρSðtÞ�g; ð16Þ

SðtÞ ≔ TrfρSðtÞ½− log ρSðtÞ þ β2∂βH
⊛
S ðt; βÞ�g: ð17Þ

One should note that

H⊛
S ð0; βÞ ¼ HS; ð18Þ

H⊛
S ð∞; βÞ ¼ H�

S þ β−1 log½ZSR=ðZSZRÞ�; ð19Þ

where the last additive constant is due to the fact that Λt is
trace preserving [71]. These relations ensure the correct
initial and long time limits of EUðtÞ. Moreover, for small
coupling V, the dynamics is given by the Davies semigroup
[21–23] which has expð−βHSÞ as a fixed point, and so

EUðtÞ → EðwÞ
U ðtÞ and the thermodynamic entropy SðtÞ →

−Tr½ρSðtÞ log ρSðtÞ� approaches the usual von Neumann
expression.
By construction, the definitions (15)–(17) satisfy asymp-

totically, at thermal equilibrium, the “standard” relations
Fð∞Þ¼−β−1 logZ⊛

S ð∞Þ, EUð∞Þ ¼ Fð∞Þ þ ∂βFð∞Þ, and
Sð∞Þ¼β2∂βFð∞Þ. In addition, sinceΛt is trace preserving,
Z⊛
S ð∞Þ≔ Trfexp½−βH⊛

S ð∞;βÞ�g ¼ Tr½expð−βHSÞ� ¼ ZS.
This implies that the thermodynamic variables at equilib-
rium take the same value regardless of the strength of the
coupling V [72], so they can be obtained by, e.g., their weak
coupling expressions. Namely, for the internal energy we

have EUð∞Þ ¼−∂β logZ
⊛
S ð∞Þ ¼−∂β logZS ¼EðwÞ

U ð∞Þ ¼
TrðρS;βHSÞ. Similarly, Sð∞Þ ¼ −TrðρS;β log ρS;βÞ and so
the entropy (17) at equilibrium approaches 0 for vanishing
temperature (in absence of degeneracy), as expected for a
“thermodynamic” entropy. This behavior has also been
found for S� [69], but it is not fulfilled for the von Neumann
entropy as entanglement may preclude the reduced state to
be pure for nonvanishing V.
On the other hand, since for a time-independent

HamiltonianH there is nowork, the first law defines heat as

_QðtÞ ¼ dEUðtÞ
dt

⇒ QðtÞ ¼ EUðtÞ − EUð0Þ
¼ EUðtÞ − hHSð0Þi: ð20Þ

In regard to the second law, it can be derived in the
integrated form. From Eq. (6),

DfΛt½ρSð0Þ�kΛtðρS;βÞg ≤ D½ρSð0ÞkρS;β�; ð21Þ

which can be straightforwardly recast in the form

− Tr½ρSðtÞ log ρSðtÞ� − Sð0Þ
− βfTr½ρSðtÞH⊛

S ðt; βÞ� − hHSð0Þig ≥ 0: ð22Þ

By adding and subtracting β2Tr½ρSðtÞ∂βH
⊛
S ðt; βÞ�, and

using Eq. (20), we finally obtain

ΔSðtÞ − βQðtÞ ≥ 0: ð23Þ

One may notice that this equation for the entropy
production reaches the zero value if the system is initially
in the Gibbs state ρSð0Þ ¼ ρS;β, as in that case the equality
in Eq. (21) is trivially obtained. Actually, in such a
situation, no thermodynamic magnitude in Eqs. (15)–
(17) changes on time. This might seem surprising but it
can be understood because, formally,

Uðt; 0ÞρS;β ⊗ ρR;βU†ðt; 0Þ ¼ e−βUðt;0ÞðHSþHRÞU†ðt;0Þ

ZSZR
: ð24Þ

Since at t ¼ 0 (13) holds, system and reservoir starts
effectively and remains canonical throughout the process,
at instantaneous “thermal equilibrium” in the Gibbs state of
the “Hamiltonian” Uðt; 0ÞðHS þHRÞU†ðt; 0Þ. Given that,
by hypothesis, there is no applied work, the internal energy
and the rest of the thermodynamic properties remain
constant. This thermodynamic reversibility should be
considered, in the strong coupling, as a different concept
from “informational” reversibility. The density matrix
indeed changes on time despite the thermodynamic vari-
ables and so the thermodynamic “state” remain constant.
However, this does not contradict the standard reversibility
notion in weak-coupling thermodynamics. That is a par-
ticular case of this more general formalism where both
informational variables (e.g., the von Neumann entropy)
and thermodynamic variables (15)–(17) coincide.
Time-dependent system Hamiltonians.—For a general

time-dependent HSðtÞ, we still demand the same initial
condition for the internal energy EUð0Þ ¼ hHSð0Þi ¼
Tr½HSð0ÞρSð0Þ� as before, and the recovery of the previous
results if HSðtÞ becomes time independent. Moreover, we
retain the requirement for a formulation just in terms of
system observables. This can be done by keeping the
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definitions (15)–(17) and redefining the operator
H⊛

S ðt; βÞ by

H⊛
S ðt; βÞ ≔ −β−1 log ½Λtfe−βHSð0Þ−β

R
t

0
Λ⋆
s ½ _HSðsÞ�dsg�; ð25Þ

where Λ⋆ denotes the Heisenberg adjoint of Λ,
Tr½ΛðAÞB� ¼ Tr½AΛ⋆ðBÞ� [45]. Note that H⊛

S ð0; βÞ ¼
HSð0Þ and for time-independent HS Eq. (14) is recovered,
as required.
The first law in this case reads

dEUðtÞ
dt

¼ _QðtÞ þ _WðtÞ; ð26Þ

and that is used to define heat,

QðtÞ ≔ EUðtÞ − hHSð0Þi −
Z

t

0

Tr½ρSðsÞ _HSðsÞ�ds: ð27Þ

Note that, if we consider a quasistatic and small coupling
regime where Λtðexpf−βHSð0Þ − β

R
t
0 Λ

⋆
s ½ _HSðsÞ�dsgÞ ≈

exp½−βHSðtÞ� such that H⊛
S ðt; βÞ ≈HSðtÞ, the weak-

coupling first law (5) is obtained. This reinforces the
definition (25).
In order to derive the second law, we define the auxiliary

object

Ωðt; rÞ ≔ −β−1 log ½Λtfe−βHSð0Þ−β
R

r

0
Λ⋆
s ½ _HSðsÞ�dsg�; ð28Þ

which satisfies Ωðt; tÞ ¼ H⊛
S ðt; βÞ. A straightforward com-

putation in Eq. (27) gives

QðtÞ ¼ TrfρSðtÞ½Ωðt; tÞ þ β∂βH
⊛
S ðt; βÞ�g

− Tr½ρSð0ÞΩð0; tÞ�: ð29Þ

For the state

ρ0ðβ; rÞ ≔ Z−1
S ðrÞe−βHSð0Þ−β

R
r

0
Λ⋆
s ½ _HSðsÞ�ds; ð30Þ

with ZSðrÞ ¼ Trðexpf−βHSð0Þ − β
R
r
0 Λ

⋆
s ½ _HSðsÞ�dsgÞ,

monotonicity of the relative entropy (6) yields
DfΛt½ρSð0Þ�kΛt½ρ0ðβ;rÞ�g≤D½ρSð0Þkρ0ðβ;rÞ�, which can
be recast in the form

− Tr½ρSðtÞ log ρSðtÞ� − Sð0Þ
− βfTr½ρSðtÞΩðt; rÞ� − Tr½ρSð0ÞΩð0; rÞ�g ≥ 0: ð31Þ

Since this is fulfilled for all r, and particularly for r ¼ t,
again by adding and subtracting β2Tr½ρSðtÞ∂βH

⊛
S ðt; βÞ� and

using Eq. (29), we obtain the second law

ΔSðtÞ − βQðtÞ ≥ 0: ð32Þ

This completes the thermodynamic formulation for general
open quantum systems in contact with a thermal reservoir.
As a simple example of this approach we may

consider a qubit with Hamiltonian HS ¼ ðω0=2ÞσzS, in
dipolar contact V ¼ κðσþS σ−R þ σ−Sσ

þ
R Þ with a composite

spin-boson reservoir [73] with Hamiltonian HR¼Hspin þ
HbosonþVspin−boson. Here, Hspin ¼ ðω1=2ÞσzR, Hboson¼R
dkωðkÞa†ðkÞaðkÞ,Vspin−boson¼α

R
dkgðkÞσxR½aðkÞþa†ðkÞ�,

aðkÞ denotes bosonic annihilation operators, and σz;�S , σz;x;�R
stand for Pauli matrices for the system and spin part of the
reservoir, respectively. Note that the bosonic part of the
reservoir is not directly coupled to the system qubit. The
coupling between system and reservoir is mediated by κ,
whereas α is supposed small enough such that a weak
coupling treatment of the spin-boson degrees of freedom
is justified [70]. Figure 1 shows the comparison between the
internal energy EU, Eq. (15), in the strong coupling and the
mean value of the system Hamiltonian hHSi for several
temperatures. One can notice that, for this model, the latter
turns out to be a modest correction to hHSi sharing a very
similar time dependency.
Initially correlated states.—It is worth examining

whether the previous approach can be extended to different
initial system-reservoir states. We do not expect that for any
initial state, but for those sufficiently close to the thermo-
dynamic paradigmof a system coupled to a thermal reservoir.
Namely, we should consider just those initial system-
reservoir states where the reservoir can be well-described
via the temperature parameter β. This condition can be
rigorously formulated in the framework of operator algebras
[47,51–53], but, for our purposes, there are another two
natural classes of states that can be considered in addition to
Eq. (2). They correspond to the displacement from the global
equilibrium ρSR;β either by system driving HSðtÞ or by
system quantum measurements, respectively [44].
For the first case ρSRð0Þ ¼ ρSR;β, and we can assume,

formally, a former product “initial” condition ρS;β ⊗ ρR;β at

FIG. 1. Internal energy (left) and entropy production (right) of a
qubit interacting with a composite spin-boson reservoir. The
qubit is initially in its ground state. The internal energy EU turns
out to be a modest correction to the expectation value of the
system Hamiltonian hHSi (lighter color, dotted line). The non-
monotonic entropy production (23) shows the non-Markovian
character of the dynamics, see Eq. (40). We have taken ω0 ¼ ω1,
κ ¼ 0.9ω0, and 10−3ω0 for the spin-boson decay rates [70].
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t0 ¼ −∞ and _HSðtÞ ¼ _HSðtÞθðtÞ, with θðtÞ the step func-
tion. Following the same steps as before we conclude

SðtÞ − Sð−∞Þ − βQ−∞ðtÞ ≥ 0; ð33Þ

where Q−∞ðtÞ ≔
R
t
−∞

_QðsÞds is the heat in the interval
ð−∞; tÞ. Then, by splitting this integral into positive and
negative time values, and adding and subtracting Sð0Þ,
which in this case is the entropy (17) of the reduced
equilibrium state (9), we have

SðtÞ − Sð0Þ þ Sð0Þ − Sð−∞Þ

− β

�Z
t

0

_QðsÞdsþ
Z

0

−∞
_QðsÞds

�
≥ 0: ð34Þ

Since we have taken _HSðtÞ ¼ 0 for t < 0, and the entropy
production for the canonical system state ρS;β reaches the
zero value for time-independent system Hamiltonians,
Sð0Þ−Sð−∞Þ−β

R
0
−∞

_QðsÞds¼0. Hence, we obtain the
desired result (32) for ρSRð0Þ ¼ ρSR;β.
For the second case, the joint initial state (after a

generally nonselective, projective measurement) is written
as

ρSRð0Þ ¼
X
k

pkΠk ⊗ ρRjk; ð35Þ

with Πk ¼ jkihkj a complete set of orthonormal
projectors and

pk ¼TrðΠk ⊗ IρSR;βÞ; ρRjk ¼
TrSðΠk ⊗ IρSR;βÞ

pk
: ð36Þ

For this kind of state it is possible to write the reduced
system dynamics as Λ̃tρSð0Þ ¼ ρSðtÞ for ρSð0Þ¼

P
kpkΠk,

with Λ̃t a CPTP map [74,75].
On the other hand, ρSR;β remains static before the

measurement, with system internal energy (15) given by

EUðeqÞ ≔ TrfρS;eq½H⊛
S ðeq; βÞ þ β∂βH

⊛
S ðeq; βÞ�g; ð37Þ

where H⊛
S ðeq; βÞ ¼ H�

S þ β−1 log½ZSR=ðZSZRÞ� according
to Eq. (19). Therefore, it seems reasonable to take the
internal energy after the measurement

EUð0Þ ¼ TrfρSð0Þ½H⊛
S ðeq; βÞ þ β∂βH

⊛
S ðeq; βÞ�g; ð38Þ

with ρSð0Þ ¼
P

k pkΠk. A finer choice could be possible
with a microscopic model for the measurement interaction
where the measurement change was not “instantaneous.”
Then by redefining H⊛

S ðt; βÞ as in Eq. (25) with Λ̃t and
H⊛

S ðeq; βÞ in the roles of Λt and HSð0Þ, respectively, the
derivation of Eq. (32) follows from the same argument as in
previous sections.

Non-Markovianity.—Finally, we show that, within this
approach, it is possible to establish a thermodynamic sig-
nature of non-Markovianity (see also Refs. [44,46,76,77]).
Suppose the dynamical map Λt to be CP divisible [78–80]
(actually P divisible is enough [81]); namely, it can be
decomposed as Λt ¼ Λt;sΛs for any pair t > s with Λt;s

CPTP. Then, monotonicity of the relative entropy (6) implies

DfΛtþϵ½ρSð0Þ�kΛtþϵðρS;βÞg
≤ DfΛt½ρSð0Þ�kΛtðρS;βÞg; ð39Þ

for ϵ > 0. From here, following similar steps as for Eq. (23)
and dividing by ϵ in the limit ϵ → 0, we obtain a positive
entropy production rate

dSðtÞ
dt

− β _QðtÞ ≥ 0: ð40Þ

Hence, for a time-independentH, a negative production rate
for some t is a rigorous indicator of the non-Markovian
character of the dynamics. It is clear the presence of intervals
with a strong negative production rate in Fig. 1.
Conclusions.—We have presented a general thermo-

dynamic framework for open quantum systems in contact
with a thermal reservoir. This was done by identifying the
nonequilibrium internal energy imposing suitable initial
and asymptotic conditions, and the recovery of the standard
weak-coupling result as an appropriate limit. The factorized
initial condition was analyzed in detail and generalized to
two natural extensions of correlated initial states.
Furthermore, we have found that Markovian dynamics
imply monotonically increasing entropy production. This
provides quantum non-Markovianity with a thermody-
namic meaning, and allows for the introduction of new
physical quantifiers of non-Markovianity. Notably, all
quantities in this approach can be inferred from measure-
ments involving only system observables. At most, several
preparations might be needed to determineH⊛

S ðt; βÞ and its
derivatives, but no controlled reservoirs are required. This
greatly simplifies the approach and opens the possibility to
measure these strong coupling thermodynamic variables in
the lab.
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