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A key question in the current diversity crisis is how diversity has been maintained throughout evolution
and how to preserve it. Modern coexistence theories suggest that a high invasion rate of rare new types is
directly related to diversity. We show that adding almost any mechanism of catastrophes to a stochastic
birth, death, and mutation process with limited carrying capacity induces a novel phase transition
characterized by a positive invasion rate but a low diversity. In this phase, new types emerge and grow
rapidly, but the resulting growth of very large types decreases diversity. This model also resolves two major
drawbacks of neutral evolution models: their failure to explain balancing selection without resorting to
fitness differences and the unrealistic time required for the creation of the observed large types. We test this
model on a classical case of genetic polymorphism: the HLA locus.
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The coexistence of numerous types, their diversity and
their growth time have been longstanding subjects of
interest and modeling [1,2]. Complex models have been
developed to explain coexistence, such as the Allee effect
[3,4], the rescue effect [5], depensation [6], or density
dependent growth [7,8]. Ecologists such as Chesson [9,10],
and more recently Ellner et al. [11] have merged many of
those into a consistent model named the modern coexist-
ence theory (MCT). They define the invasion rate as the
probability for new types to grow in the presence of other
competitive types. They suggest that mechanisms increas-
ing the invasion rate contribute to coexistence and diversity.
Diversity is commonly defined as the number of types over
the total population [12–14].
While it would seem intuitive that diversity is indeed

maintained through the emergence of new types, the
mechanisms driving this emergence can in parallel promote
the growth of very large types. Assuming that at equilib-
rium, the total population is fairly constant, and assuming a
heavy-tailed distribution of type sizes, as is often observed
and predicted [15,16], those large types may occupy a
macroscopic fraction of the total population and lower the
diversity. We here use an extension of a classical birth,
death, innovation (or mutation) neutral model (BDIM)
including catastrophes (BDICM) [17]. We demonstrate
that the addition of catastrophes can simultaneously
increase the invasion rate and decrease diversity, breaking
the paradigm. A catastrophe represents a major deletion
event where a type is fully or partly eliminated. In a
constant resources environment, the total population size is
balanced by equal average birth and death rates. However,
when catastrophes are introduced, this balance is broken,
and the average death rate of each type not hit by a
catastrophe is less than its average birth rate. This results in

net growth for each individual and exponential growth for all
types not yet hit. Part of those births are mutations yielding
new types of size 1. Their positive net growth is equivalent to
a positive invasion rate. However, exponential growth also
leads to very large types. The presence of those large types
forces a smaller total number of types. We, therefore,
observe a lower diversity despite a positive invasion rate.
We also show that BDICM resolves critical issues raised

in classical neutral models (e.g., the Moran model [18,19]).
They indeed fail to explain the coexistence of several alleles
at frequencies higher than prediction from genetic drift. The
genetic drift is the change in the genetic composition of a
population through random sampling of the current mem-
bers dying or duplicating. This coexistence is commonly
referred to as balancing selection [20]. It is usually
explained by frequency dependent selection (FDS), where
the fitness of a genotype decreases as it becomes more
common [21,22]. While complex models have been pro-
posed for balancing selection or negative FDS using fitness
differences [21,23,24], there is limited evidence for any of
those. Classical models also fail to explain the emergence
of large types and usually require an unrealistically long
time for their growth. This problem, raised by Karev et al.
[25,26], was partly solved in their nonlinear model, but it
assumes that individual net growth rates are affected by
their type size, which is not practical for genes or any other
nonspatial characteristics. An interesting aspect of BDICM
is that, in the presence of catastrophes, life expectancies
become much lower and uniform across almost all type
sizes since all types can get hit with equal probability. We
show that this aspect addresses the issue of long expected
growth time. It also replicates features of balancing
selection in a purely neutral scenario since it removes
the advantage of large types.
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The model.—Formally, we expanded upon a neutral
birth, death and, innovation process, by introducing large-
scale events (catastrophes). We assume asexual reproduc-
tion. The number of individuals of each type is denoted by
k and the number of types of this size is denoted by Nk. The
moments of the distribution aremj ¼

P
k k

jNk, j ¼ 0, 1, 2,
where j is the moment’s order. Using this definition, m0 is
the number of types and m1 is the number of individuals in
the population.
Birth events increase by 1 the number of individuals of a

type and occur at a rate of α per individual. A constant
fraction μ of all births leads through mutations to new types
of size 1. Death events decrease by 1 the number of
individuals of a type and occur at a rate of ðm1=N̄Þ per
individual. N̄ is the expected population size in equilibrium
in the absence of catastrophes [see Eq. (2) in the
Supplemental Material [27] ]. The model assumes that
the death rate is proportional to the total population size
to balance the total population as in the standard nutrient
restricted logistic model. A catastrophe deletes all the
individuals of a given type with a total rate of γ (we
further show that models with only partial deletion yields
similar results). The probability that a type would be extinct
in a catastrophe is not affected by its size. α, γ, N̄, and μ are
free parameters. Without loss of generality, α can be set
equal to 1 through a time rescaling (see [17] and Fig. 1 for a
detailed derivation of the model).
Time is discretized with time steps 1=m1. Within this

short time interval, a type of size k will either not change,
grow to a type of size kþ 1, lose one of its members and
become a type of size k − 1 or disappear completely
through a catastrophe or through a death if its size was
1. In equilibrium, total births and deaths are equal:
ðα=m1Þ ¼ ð1=N̄Þ þ ðγ=m0Þ. Since only nonmutation birth
events increase the current type size, the probability to
increase is kð½αð1 − μÞ�=m1Þ. Similarly, the probability for
a type to decrease by death is ðk=N̄Þ ¼ kð½α=m1� − ½γ=m0�Þ
and by catastrophe is ðγ=m0Þ. Denoting by Tk the average
time to extinction for a type of initial size k, we obtain
Eq. (1). We solved this system with a matrix inversion (see
the Supplemental Material [27] for derivations). To avoid

restrictive assumptions on the type size distribution (as
in [17]), we used numerical estimates for m0 and m1

obtained from simulations reaching steady state, for each
value of γ.
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We derived similar results using a Galton-Watson (GW)
process. In a typical GW process, a population is assumed
to have an initial size of 1. At each time step, each member
can be replaced by i identical descendants. Here, we set
i ∈ 0; 1; 2. Death corresponds to i ¼ 0, no event to i ¼ 1,
and birth to i ¼ 2. We denote by pi the probability of
getting i descendants. The time to extinction in a regular
GW process, namely when the population reaches a size of
0, is obtained through the probability generating function
GðxÞ ¼ p0 þ p1xþ p2x2. Denoting by dt the probability
for this type to be extinct at time t, the GWmodel states that
dt ¼ Gðdt−1Þ. If the initial size is k instead of 1, then the
probability to be extinct at time t is dkt since all k members
behave like independent types of size 1, ignoring the
possible interactions through the logistic term and assum-
ing a large total population. Since the GW process only
describes the events of regular birth or death and does not
account for the catastrophes, the survival probability must
be multiplied by the probability that no catastrophe
occurred. Denoting by d̃t;k ¼ 1 − ð1 − dkt Þeð−γt=m0Þ, the
catastrophe corrected probability of extinction, one gets:

p0 ¼
α

m1

−
γ

m0

; p1 ¼ 1−p0 −p2; p2 ¼
αð1− μÞ

m1

;

Tk ¼
X

t

tðd̃t;k − d̃t−1;kÞ: ð2Þ

As expected, the GW process leads to the same times to
extinction as in the analytical method. Finally, we show the
accuracy of our two approaches by testing them against
simulations (lower plots in Fig. 2), with similar results (see
the Supplemental Material [27] for methodologies).
In classical BDIM (i.e., no catastrophe) [18,25], there is a

natural extinction survival transition at a zero net growth
rate, and the times to extinction increase with respect to the
initial type size (green lines in upper right plot of Fig. 2).
However, in the BDICM, two other transitions appear. If γ
is higher than μ, a transition to extinction occurs since
fewer new types are created by mutations than the ones
destroyed. As γ approaches μ, another intermediate tran-
sition is observed, where the times to extinction not only
decrease but also become uniform across all initial type

FIG. 1. Description of the model dynamics. Birth: the number
of individuals in a given type increases by 1. Death: the number
of individuals in a given type decreases by 1. Mutation: a constant
fraction of all birth events leads to the creation of new types of
size 1. Catastrophe: all individuals in a type are deleted.
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sizes (upper left plot in Fig. 2) resulting in a change in
the balance between small and large types. As will be
explained in the next section, this transition is characterized
by a positive invasion rate since large types can now
disappear just as fast as small ones and faster than for
γ ¼ 0, creating room for new types to appear and grow. It is
also characterized by a lower diversity since types can grow
rapidly, before getting hit, to attain large sizes (longer range
in the blue lines in upper right plot of Fig. 2) and hold a
large fraction of the total population.
Invasion rate vs diversity.—Using the GW model, one

can compute the average growth after one step as:

E½growth after one step� ¼ ln

�
1

k
d½GðxÞ�k

dx

�
�
�
�
x¼1

�

;

¼ ln ð1 − p0 þ p2Þ: ð3Þ

Note that this growth rate is independent of the initial
type size k and its sign is entirely determined by the sign of
p2 − p0. Without catastrophes, on average, existing type
sizes would consistently decrease (since new types are
created, and the total birth and death rate must equilibrate).
This decrease leads them to the 0 absorbing state. The
presence of catastrophes ensures that, in equilibrium, a
transition occurs for γ ¼ ½ðαμm0Þ=m1�, where the average
growth rate of all types becomes positive until their

annihilation by a catastrophe as shown in Fig. 3. For this
same γ value, we also observe from the simulations that the
slope of the diversity (m0=m1) becomes more negative and
the entry rate becomes negative, which confirms the results
obtained with the GW model. The entry rate is defined as
the difference between the number of births by mutation
and the number of deaths by catastrophe. Since the
equilibrium ensures that regular births plus mutations equal
natural deaths plus catastrophes, the entry rate is opposite to
the growth rate.
This transition, although closely related, is different from

the one observed in [17]. The transition described there
is between “low variance” and “high variance” phases for
γ ¼ ð2αμm0Þ=m1. Our transition appears at a lower γ, and
the diversity starts to decrease before the second moment of
the type size distribution diverges.
So far, the catastrophe rate was neither a function of the

population size nor the number of types. When a catas-
trophe event occurs, a type is randomly chosen to be
eliminated with equal probability over all types. To assess
the robustness of our results, we compared other catastro-
phe models: two in which, for each catastrophe, only a
fraction (fixed or random) of the population of one type
is destroyed, and one where the catastrophe rate is propor-
tional to m1 like the regular death rate (see the
Supplemental Material [27]). As shown in Fig. 3, as γ
increases, the fraction of deaths induced by catastrophes
becomes large enough and the transition emerges.
To summarize, in BDICM, in the “positive invasion rate”

phase, although the lifespan of each type is on average low
since they can be deleted via catastrophes, the growth rate is
positive across all types. Therefore, several new types
emerge and rapidly invade the system. At the same time,

FIG. 2. Upper left plot: times to extinction with respect to the
catastrophe rate γ and the initial type size. Upper right plot: times
to extinction for different values of γ. Green curves correspond to
the “negative invasion rate” phase where large types live longer
but never reach a high size. Blue curves correspond to the
“positive invasion rate” phase where catastrophes level the
lifetime expectancy but types can reach higher sizes. Lower
plots: comparison between simulations, GW process, and ana-
lytical expected times to extinction. The left plot is for γ ¼ 0 and
the right plot for γ ¼ 0.001. Without catastrophe, times to
extinction grow with type size and can reach high values. As
γ increases, times to extinction are reduced and become uniform
across type sizes for sufficiently large types.
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FIG. 3. On each plot the right scale represents the diversity as
defined as m0=m1 and the entry rate as defined as the number of
mutations minus the deaths by catastrophe. The left scale
represents the invasion rate as the log of the average growth
rate of types after one step. (a) Complete deletion for each
catastrophe as baseline model. (b) Deletion of a fixed fraction of a
type in each catastrophe. (c) Catastrophe rate proportional to the
population size. (d) Deletion of a random fraction of a type. We
observe in all models that above a given catastrophe rate, the
invasion rate becomes positive while diversity decreases.
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surviving types grow exponentially and become so large
that the diversity decreases, breaking the paradigm that a
positive invasion rate implies higher diversity.
Comparison to FDS models.—This “positive invasion

rate” phase is similar to balancing selection in that it
promotes the growth of rare types. Moreover, in BDIM,
small types have a disadvantage since they have a higher
probability to reach the 0 absorbing state. However, when
death is dominated by catastrophes, large types also have a
high probability to reach the absorbing state. This removes
their advantage over small types and gives the later a higher
relative chance to grow. Other models were developed to
explain balancing selection. For instance, Karev et al. [26]
proposed a nonlinear BDIM, which corresponds to FDS. In
their linear BDIM (without FDS), birth and death rates are
equal and proportional to the type size. This model does not
explain balancing selection and it requires extremely long
times to reach equilibrium. Those issues are resolved in
their nonlinear FDS model. However, this model implies
the unrealistic assumption that individuals die or give birth
knowing the size of their type. Such an assumption might
occur if each type had a distinct resource, but it is highly
improbable in a model with hundreds of types.
The BDICM with γ ¼ 0 reproduces the same times to

extinction as the linear model [26]. In the nonlinear model,
a positive fixed birth rate a (type size independent) is
assumed for each type and the individual birth rate α is set
to be lower to achieve equilibrium ½αðkþ aÞ�=m1 ¼ ðk=N̄Þ
(see the Supplemental Material [27] for details). The times
to extinction with FDS are equivalent to the ones obtained
for a weak catastrophe rate, suggesting a similarity between
classical negative FDS and the BDICM (Fig. 4).
Populations in HLA.—One of the systems where the

contrast between diversity and a positive invasion rate is the

clearest is the MHC locus [28]. MHC proteins present self
and foreign peptides to immune system cells. The genes
coding for these proteins (denoted HLA in humans) are by
far the most polymorphic in the human genome with
thousands of alleles of each of the main classical HLA
genes [23,29]. The main arguments currently used to
explain the origins of this extreme genetic diversity in a
specific locus are different aspects of balancing selection
where new types have an advantage over existing
types [21]. However, recent evidence suggests that the
HLA haplotype distribution is biased toward excessive
large types [24,30–32].
To test whether BDICM is consistent with the HLA

frequencies, we computed the HLA-A frequency distribu-
tion in different populations in the United States, and the
catastrophe rate producing the best fit for this distribution.
A catastrophe rate of 0 cannot explain the observed
distribution. However, a low catastrophe rate can produce
an excellent fit (see Fig. 4 for the Caucasian population).
This is not evidence that catastrophes are the mechanism
explaining the distribution, but it shows their plausibility. In
this context, catastrophes would represent a destructive
allele, that, in some conditions, can kill all individuals that
carry it. The distributions for other alleles and populations
are similar [23,24,30].
Conclusions.—Catastrophes partly or fully erasing pop-

ulations are frequent in many domains ranging from
ecology to market dynamics [33–35]. In the population
dynamics context, such events can be the eradication of
local populations through weather events or diseases. In the
genetic context, this can happen if a gene induces suscep-
tibility to a certain pathogen. Introducing even a small
amount of catastrophes to a BDIM inherently changes the
dynamics. Specifically, there is a transition to an “invasion”
regime, where the lifespan of types is mainly determined
by catastrophes and not by the diffusion to the 0 absorb-
ing state.
The intuition is simple. In the absence of catastrophes,

births and deaths must be balanced leading to an Ewens-
like type-size distribution [15]. However, in the presence of
catastrophes, the average birth rate of each type can be
higher than its death rate, with the total population balanced
by catastrophes. This results in a positive growth rate for
all type sizes and a positive invasion rate. In such a case,
the sizes of types are determined by the combination of
exponential growth and geometric distribution of time to
catastrophe, leading to a skewing of the distribution toward
large types. These large types can exist in parallel with a
high invasion rate since the lifespan of each type is
very low.
This model demonstrates that the paradigm in which the

invasion rate induces diversity does not hold. Moreover, it
shows that, in order to maintain diversity, the focus should
be on limiting the size of large types instead of boosting the
invasion rate. The presence of catastrophes can explain

FIG. 4. Left plot: simulated and analytical times to extinction
computed with the modified model with FDS introduced in the
form of a constant birth rate a and a reduced relative birth rate α.
For a ¼ 0, the curves fit with our model without catastrophe.
When adding balancing selection, we observe that the behavior is
similar to adding catastrophes. Hence, the catastrophe model
replicates balancing selection. Right plot: allele frequencies. The
CAU curves represent the frequencies of HLA alleles for the
Caucasian population. We compared it with simulations with and
without catastrophes. We observe that the presence of catastro-
phes reproduces the frequencies of the alleles and could explain
their distribution.
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balancing selection without resorting to fitness differences
or nonlinear models. It also explains the emergence and
growth of large types within short times. Since this
transition is only the result of a change in the balance
between the total birth and death events, it is not affected by
the details of the catastrophes. Similarly, Wilcox et al. [36]
showed that density dependent catastrophes do not change
the conclusions of their model.
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