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We consider the impact of electron-electron interactions on the temperature dependence of the
anomalous Hall effect in disordered conductors. The microscopic analysis is carried out within the
diagrammatic approach of the linear response Kubo-Streda formula with an account of both extrinsic skew-
scattering and side-jump mechanisms of the anomalous Hall effect arising in the presence of spin-orbit
coupling. We demonstrate the importance of electron interactions in the Cooper channel even for nominally
non-superconducting materials and find that the corresponding low-temperature dependence of the

anomalous Hall conductivity is asymptotically of the form
ffiffiffiffi
T

p
= lnðT0=TÞ in three dimensions and

ln½lnðT0=TÞ� in two dimensions, where the scale of T0 is parametrically of the order of Fermi energy. These
results, in particular, may provide a possible explanation for the recently observed unconventional
temperature dependence of the anomalous Hall effect in HgCr2Se4.

DOI: 10.1103/PhysRevLett.124.156802

Introduction.—The anomalous Hall effect (AHE) is
incredibly rich and complex transport phenomenon, see
Refs. [1–3] for comprehensive reviews and references
herein. The key ingredients of AHE are the broken time-
reversal and spin-rotational symmetries, and one usually
distinguishes between intrinsic and extrinsic mechanisms
of anomalous conduction. The intrinsic mechanism, termed
as anomalous velocity, was discovered by Karplus and
Luttinger [4], and arises from the transverse drift of
electrons moving in a perfect periodic lattice subject to
spin-orbit coupling. Importantly, it can be interpreted in
terms of the Berry phase associated with the motion of
Bloch electrons in momentum space [5]. The topological
origin of the anomalous velocity can lead to a quantized
anomalous Hall effect and the corresponding conductance
can be expressed in terms of the integral of the Berry
curvature over the momentum space or the Chern number
for fully filled bands. In a generic disordered system, the
quantum nature of electron scattering by impurities com-
bined with strong spin-orbit effects leads to a right-left
asymmetry in the differential scattering cross section of the
average scattering probability. This extrinsic effect was
found by Smit [6] and is known as the skew-scattering
mechanism. Technically it appears to the third order in the
scattering potential, namely beyond the leading Born
approximation. In addition, impurity scattering also leads
to a coordinate shift in electron trajectories that gives rise to
an extra contribution to the velocity operator. This mecha-
nism was revealed by Berger [7] and is termed a side-jump
accumulation. In the semiclassical approaches to AHE
based on the Boltzmann equation, one also discusses the
so-called anomalous distribution mechanism, however this
term is in fact just a part of the side-jump process in the

language of Kubo-Streda formulas. The connection
between diagrammatic and kinetic equation approaches
has been discussed in Ref. [8], including the recent
discussion of remaining discrepancies between them in
relation to diffractive skew scattering [9–12]. Unlike the
anomalous velocity term, extrinsic mechanisms are obvi-
ously not universal as, in particular, they depend on the
statistical properties of disorder and strength of the scatter-
ing potential itself. It is of interest to point out, however,
that in the case of centro-symmetric impurity potential
electron coordinate shifts upon scattering can be expressed
solely in terms of Bloch functions associated with the
motion of electrons in a periodic potential of the crystal.
The latter can in turn be related to the Pancharatnam phase
which represents a special case of Berry phase [13,14]. In
this limit side-jump mechanism becomes universal and can
be regarded, in some sense, as intrinsic. The concept of
side-jump remains even in the pure system and can be
associated with the two-particle collisions processes. This
gives rise to the hydrodynamic limit of AHE [15].
Experimentally, extrinsic mechanisms can be distin-

guished by their respective scalings with impurity concen-
tration, and thanks to recent advances in control of impurity
density, comprehensive scaling between the anomalous
Hall conductivity and longitudinal conductivity has been
established, see e.g., Refs. [16–18] for the detailed dis-
cussion. However, substantial complications arise in analy-
sis of the data since low-temperature transport properties
of disordered systems are strongly affected by quantum
corrections. These are most prominently weak-localization
(WL) and electron-electron interaction (EEI) terms. In
the context of longitudinal conductivity and conventional
Hall effect, both of these quantum effects have been
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meticulously studied and well understood with, in general,
excellent agreement between measurements and theoretical
predictions [19–21]. However, much less is known con-
cerning the impact of quantum interference corrections to
anomalous Hall transport, and especially in regards to the
role of EEI effects.
Overview and motivation.—In the first detailed mea-

surements carried out by Bergmann and Ye [22], anoma-
lous Hall conductivity of amorphous ferromagnetic thin
films of Fe showed no noticeable temperature dependence
in the quantum regime. In contrast, the corresponding
anomalous Hall resistivity followed logarithmic temper-
ature dependence similar to Coulomb anomaly observed in
the longitudinal resistance but twice its magnitude. Since
quantum coherent processes responsible for WL correc-
tions were expected to be strongly suppressed by magnetic
scatterings, and the only low-T anomaly could be due to
Coulomb interaction, the data was interpreted as EEI do not
affect anomalous Hall conductivity. This conclusion was
further supported by the theoretical analysis of Langenfeld
and Wölfle [23] who showed by an explicit calculation that
Coulomb anomaly terms due to Al’tshuler-Aronov (AA)
corrections cancel identically from the anomalous Hall
conductivity. The subsequent measurements on amorphous
FexSi1−x multilayers revealed more complex picture where
not only anomalous contribution to Hall resistance was
seen, but also a clear temperature dependence of the
anomalous Hall conductance was observed [24]. The
multitude of experiments that followed on a variety of
material systems including (amorphous, polycrystalline, or
granular) ferromagnetic thin films of Fe, Ni, FePt, CoFeB,
CNi3 [25–29] as well as ferromagnetic semiconductors
Ga1−xMnxAs and HgCr2Se4 [30,31] provided more com-
prehensive evidences for the quantum anomalies in the
temperature and disorder dependence of the anomalous
Hall conductivity. These measurements in part also trig-
gered multiple theoretical studies where the effects of WL
and Coulomb interaction were reanalyzed [32–35]. It was
shown that in contrast to the conventional Hall effect, there
exists a nonvanishing WL correction to the anomalous Hall
resistivity, δρxy=ρH ¼ ½δσxy=σxy − 2δσxx=σxx�, where ρH is
the classical Hall resistance. While δσWL

xy vanishes in the
side-jump mechanisms, it is finite for the skew-scattering.
As a result, the total WL correction to σxy does not cancel
with the corresponding WL correction to σxx. Coulomb
anomaly from direct and exchange terms were shown to be
zero for the anomalous Hall conductivity [34], so that on
top of WL, the additional T dependence of anomalous Hall
resistivity comes from the AA corrections to the diagonal
conductivity, δσAAxx . Since in two dimensions both δσWL and
δσAA are logarithmic in temperature, it is a challenge to
separate their relative importance in δρxyðTÞ.
The seemingly emergent conclusion from all the existing

theories that the sole mechanism of T dependence of δσAHExy

from quantum interference processes is due to WL being at

odds with various experimental facts and the most recent
experimental results of AHE measurements in HgCr2Se4
[31] in particular. This material is in the three-dimensional
limit where WL and AA corrections have distinct temper-
ature dependence. Indeed, provided that the leading source
of decoherence is governed by the Coulomb interaction,
which implies the dephasing time of the form τ−1ϕ ≃
T

ffiffiffiffiffiffi
Tτ

p
=ðpFlÞ2, the WL correction δσWL ≃ σQ=

ffiffiffiffiffiffiffiffiffi
Dτϕ

p
scales as T3=4, where σQ ¼ e2=ℏ is quantum of conduct-
ance, τ and l ¼ vFτ are the disorder mean free time and
path, respectively, D ¼ vFl=3 is the diffusion coefficient,
and pF is the Fermi momentum. In contrast, the AA
correction is of the form δσAA ≃ σQð1 − 9Fσ=8Þ

ffiffiffiffiffiffiffiffiffiffi
T=D

p
,

where Fσ is the triplet channel interaction constant (in this
formula we took Fσ ≪ 1 for brevity). Based on these
results the expectation is then that δρAHExy ∝

ffiffiffiffi
T

p
and

δσAHExy ∝ T3=4 but this is not what was seen experimentally.
Measurements showed that the anomalous Hall conduc-
tivity also scales as

ffiffiffiffi
T

p
[31]. This motivates the current

work aimed at analyzing the discrepancy between the
existing theory and experiment in regards to the effect of
electron-electron interaction on the AHE.
The key insight that one can try to explore, which was

overlooked in the previous studies of AHE, comes from the
work of Larkin [36] who argued that low-temperature
transport characteristics of disordered conductors can be
strongly affected by the Cooper channel even for the case
of purely repulsive interaction, namely for materials that
do not undergo superconducting transition. As a guiding
example Larkin demonstrated how WL corrections are
modified with an account of Maki-Thompson contributions
known from the context of superconducting fluctuations
[37,38]. This idea was further systematically developed by
Al’tshuler et al. [39] in a detailed study where all ten
classes of leading ladder diagrams were carefully examined
and temperature-depended corrections to diagonal conduc-
tivity were derived. It is the intent of this work to extend
fundamentals of the theory of quantum interaction correc-
tions [36,39] to the case of the anomalous Hall transport
phenomena.
Model.—We adopt the same model as in Ref. [23], i.e., a

model of spin unpolarized electrons scattering off localized
magnetic moments with spin-orbit coupling. We perform
calculations of AHE diagrammatically based on the linear-
response Kubo-Streda formula. The elements in the dia-
grams are given as follows, see Figs. 1 and 2. The solid line
denotes the impurity averaged Green’s function of electrons

GpðεnÞ ¼ ½iε̃n − ξp�−1; ε̃n ¼ εn þ
1

2τ
sgnðεnÞ; ð1Þ

where ξp ¼ p2=2m − EF and εn ¼ ð2nþ 1ÞπT is the
Matsubara frequency. In the case of a disordered metal,
T ≪ τ−1 ≪ EF, the three-leg cooperon vertex representing
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the sum of impurity ladder diagrams, is written in
the form

λqðεn; ε0nÞ ¼
jε̃n − ε̃0nj

jεn − ε0nj þDq2Θð−εnε0nÞ
; ð2Þ

where ΘðxÞ is the Heaviside step function. For the case
of repulsive interactions in the Cooper channel, positive
coupling constant g > 0, the effect of EEI is captured by the
propagator [36,39]

L−1
q ðΩkÞ ¼ νF

�
ln
T0

T
− ψ

�
1

2
þ jΩkj
4πT

þDq2

4πT

�
þ ψ

�
1

2

��
;

ð3Þ

which is depicted by the wavy line in diagrams. Here νF
is the density of state on the Fermi surface, T0 ¼
EF expð1=νFgÞ, and ψðxÞ is the digamma function.
Lastly, the dashed line represents the impurity potential
defined by the amplitude of scattering from the state with
momentum p to p0

Vpp0 ¼ V0

�
1 −

iαso
p2
F
ðp × p0Þz

�
; ð4Þ

where αso is the dimensionless spin-orbit coupling constant
giving rise to skew scattering and side jump processes.
In the dc limit, ω → 0, conductivity can be found from the
retarded component of the electromagnetic response func-
tion, σ ¼ QRðωÞ=ð−iωÞ.
Skew-scattering mechanism.—To the first order in inter-

action, and with account for impurity averaging, QðωÞ is
given by ten distinct diagrams representing Aslamazov-
Larkin (AL), Maki-Thompson (MT), and density of states
(DOS) terms [40]. For the purpose of AHE calculation,
each diagram needs to be generalized to include skew-
scattering and side-jump effects. We begin with the skew-
scattering mechanism and consider first MT diagrams, see
the upper panel of Fig. 1. The analytical structure of the
response kernel for all these diagrams has a common form

QxyðωνÞ ¼ 2e2T
X
Ωk

Z
ddq
ð2πÞd LqðΩkÞΣqðΩk;ωνÞ; ð5Þ

with the different expressions for Σq. For example, the
diagram (a) reads explicitly

Σsk-MT-a
q ¼ T

X
εn

λqðεn;Ωk−nÞλqðεnþν;Ωk−n−νÞJsk-MT-a
xy ; ð6Þ

where εnþν ≡ εn þ ων;Ωk−n ≡Ωk − εn, and we assume
ων > 0 without loss of generality. The current block

Jsk-MT-a
xy ¼ nimpν

3
Fhvp;xv−k;yVpk0Vk0kVkpi

×
Z

dξkGkðεnÞGkðεnþνÞG−kðΩk−n−νÞG−kðΩk−nÞ

×
Z

dξpdξk0GpðεnÞGpðεnþνÞGk0 ðεnþνÞ ð7Þ

contains an angular average h…i over the directions of
momenta, and nimp is the impurity concentration. Carrying
out integrals over fermionic dispersions, angular average on
the Fermi surface, and frequency summations followed by
an analytical continuation, ων → −iω, one finds the cor-
responding conductivity

σsk-MT-a
xy ¼ −

e2

18
ffiffiffi
π

p τ

τsk

Z
∞

0

ffiffiffiffiffiffiffiffiffiffi
T=D

p ½ψ 0ð1
2
þ xÞ�2dx= ffiffiffi

x
p

½lnðT0

T Þ − ψð1
2
þ xÞ þ ψð1

2
Þ�2 ;

ð8Þ

where x ¼ Dq2=4πT and we have introduced the character-
istic skew-scattering time τ−1sk ¼ nimpαsoν

2
FV

3
0. The remain-

ing diagrams in the upper panel of Fig. 1 can be evaluated
in the same fashion [41]. In the temperature range of
interest we have lnðT0=TÞ ≫ 1, so that collecting all the
terms, and extracting leading asymptotic expression we
find for the total MT corrections in the skew-scattering
mechanism:

σsk-MT
xy ¼ −1.22σQðτ=τskÞ

ffiffiffiffiffiffiffiffiffiffi
T=D

p
ln−2ðT0=TÞ: ð9Þ

There are six diagrams of the DOS type, each of which
may have either two or four copies depending on the
arrangements of the impurity lines, see the left panel of
Fig. 2. All these terms are structurally similar so we
consider diagram (a) as a guiding example and quote the

4+4+4

(a) (b) (c)

+ 44

(a) (b)

FIG. 1. Diagrams for Maki-Thompson corrections in the skew
scattering (upper panel) and side-jump (lower panel) mecha-
nisms. The wavy line represents the EEI propagator in the Cooper
channel Eq. (3). The shaded triangle is the three-leg vertex
(cooperon) Eq. (2). Each diagram comes with four different
copies corresponding to all possible arrangements of impurity
lines for the amplitude of Eq. (4). The single impurity line in the
side-jump diagrams contains the accumulation velocity term of
Eq. (14) in the current vertex.
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results for all others. The response kernel is still given by
Eq. (5) but the self-energy part reads now as follows

Σsk-DOS-a
q ¼ T

X
εn

λ2qðεn;Ωk−nÞJsk-DOS-axy ; ð10Þ

where

Jsk-DOS-axy ¼ nimpν
3
Fhvp;xvk;yVpkV−p−k0V−k0−ki

×
Z

dξk0G−k0 ðεnþνÞ

×

�Z
dξkG−kðεnþνÞGkðΩk−nÞGkðΩk−n−νÞ

�
2

:

ð11Þ

Repeating the same steps, we obtain for the corresponding
conductivity correction [42]

σsk-DOS-axy ¼ −
2e2ffiffiffi
π

p τ

τsk

Z
∞

0

ffiffiffiffiffiffiffiffiffiffi
T=D

p
ψ 0ð1

2
þ xÞ ffiffiffi

x
p

dx

lnðT0

T Þ − ψð1
2
þ xÞ þ ψð1

2
Þ : ð12Þ

An explicit calculation of the remaining diagrams in the
left panel of Fig. 2 shows that the total DOS correction is
equal to [43]

σsk-DOSxy ¼ 2.14σQðτ=τskÞ
ffiffiffiffiffiffiffiffiffiffi
T=D

p
ln−1ðT0=TÞ: ð13Þ

In order to capture the skew scattering mechanism in the
AL diagram one needs to go to the second loop order in
interaction [44]. The corresponding diagram contains a
quantum crossing of a Hikami box that brings an extra
smallness in 1=ðpFlÞ ≪ 1, as compared to both Eqs. (9)
and (13). In addition, this AL term is more strongly
suppressed in powers of lnðT0=TÞ, so that can be neglected.
We should note, however, that in superconductors close to
Tc this contribution may be substantial due to its singular
nature [45].
Side-jump mechanism.—We proceed with the analysis of

the side-jump effect. This mechanism is manifested by an
additional term in the matrix element of the velocity
operator due to spin-orbit coupling

hp0jv̂jpi ¼ p
m
δpp0 −

iαso
2mEF

X
j

Vp−p0eiðp−p
0Þ·Rj ½ẑ × ðp − p0Þ�;

ð14Þ

where Rj is the radius vector of a given impurity. It
generates additional diagrams and all the DOS processes
are listed in the right panel of Fig. 2. For the self-energy
of the response kernel in Eq. (5) one has, for diagrams (a)
and (b),

Σsj-DOS-ðaþbÞ
q ¼ T

X
εn

λ2qðεn;Ωk−nÞJsj-DOS-ðaþbÞ
xy ; ð15Þ

where

Jsj-DOS-ðaþbÞ
xy ¼ −inimpν

2
F
αsoV2

0

2mEF
h½ẑ × ðp − p0Þ�xvp;yi

×
Z

dξpG2
pðεnÞGpðεnþνÞGpðΩk−nÞ

×
Z

dξp0 ½Gp0 ðεnþνÞ þ Gp0 ðεnÞ�: ð16Þ

After all the technical steps we find an expression for
the corresponding conductivity term which is structurally
identical to Eq. (12), with the only difference in the
numerical prefactor, and also the ratio of scattering times
should be replaced by the dimensionless side-jump param-
eter τ=τsk → ςsj ¼ nimpαsoνFV2

0=ðπEFÞ. Adding the
remaining two terms from diagrams (c) and (d) we find
in total

σsj-DOSxy ¼ 2.14σQςsk
ffiffiffiffiffiffiffiffiffiffi
T=D

p
ln−1ðT0=TÞ: ð17Þ

The side-jump scattering in MT diagrams, see Fig. 1, does
not give a finite contribution as respective terms (lower
panel in Fig. 1) cancel each other, so that

σsj-MT
xy ¼ 0: ð18Þ

Likewise, we do not find finite contributions of side-jump
processes in the AL diagrams, at least to the leading order
in 1=ðpFlÞ.
Summary and discussion.—A few comments are in order

in relation to results presented in this Letter. We find that
EEI in the Cooper channel produce temperature dependent
corrections to the anomalous Hall conductivity. At low
temperatures the effect is asymptotically dominated by the
density of states processes in a parameter lnðT0=TÞ. Both
skew scattering and side jump mechanisms contribute and
scale mainly as a square root of temperature in three
dimensions with an additional logarithmic suppression.
This may be relevant in regards to the recently reported
measurements of AHE in HgCr2Se4 where σxy ∝

ffiffiffiffi
T

p
was

observed [31]. However, it must be carefully noted that
effects of spin polarization may strongly influence the low

+ 2 + 4

+ 4 + 4 + 2

2

(a) (b) (c)

(d) (e) (f)

+ 4

+ 4 + 4

4

(a) (b)

(c) (d)

FIG. 2. Diagrams for the DOS corrections to the AHE in the
skew scattering (left panel) and side-jump (right panel) mecha-
nisms. The nomenclature is the same as in Fig. 1.
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temperature behavior of σxy. At temperatures below the
Zeeman energy splitting Ez of the conduction electron
energies caused by the ferromagnetic polarization, we
estimate that MT contribution in the skew-scattering
mechanism is further suppressed in a parameter
ðT=EzÞ3=2, whereas the DOS term is suppressed byffiffiffiffiffiffiffiffiffiffiffi
T=Ez

p
. As a result, σsk-MT

xy ∝ T2 and σsk-DOSxy ∝ T, for
T < Ez, while σxy ∝

ffiffiffiffi
T

p
= lnðTÞ leading behavior pertains

only for T > Ez [46].
In Fig. 3 we attempted to fit the data with our analytical

results. We find that both MT [Eq. (9)] and DOS [Eq. (13)]
terms need to be retained for the best quantitative com-
parison. The relative importance of two extrinsic terms can
be estimated from Eqs. (13) and (17) as σskxy=σ

sj
xy ∼

EFτðνFV0Þ. For moderately strong impurity potential
when, νFV0 ∼ 1, skew scattering dominates in the metallic
regime EFτ ≫ 1, however, both terms are of the same
order close to Mott-Ioffe-Regel limit. The same analysis
can be carried out for two-dimensional systems and
we find much weaker temperature dependence
σskxy ≃ σQðτ=τskÞ ln½lnðT0=TÞ= lnðT0τÞ�.
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FIG. 3. Temperature dependence of the anomalous Hall conductivity for three different samples per measurements of Ref. [31], see
their Fig. 3(d) and the Supplemental Material [46] for further details. Solid line represents a theoretical fit to the calculated function
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was used as a fitting parameter while T0 was estimated for the given sample carrier concentration from Table I of Ref. [31]. The scale of
δσxy is in units ðOhm cmÞ−1.
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