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In this Letter, we discuss two general classes of apparent violations of the bulk-edge correspondence
principle for continuous topological photonic materials, associated with the asymptotic behavior of the
surface modes for diverging wave numbers. Considering a nonreciprocal plasma as a model system, we
show that the inclusion of spatial dispersion (e.g., hydrodynamic nonlocality) formally restores the bulk-
edge correspondence by avoiding an unphysical response at large wave numbers. Most importantly,
however, our findings show that, for the considered cases, the correspondence principle is physically
violated for all practical purposes, as a result of the unavoidable attenuation of highly confined modes even
if all materials are assumed perfect, with zero intrinsic bulk losses, due to confinement-induced Landau
damping or nonlocality-induced radiation leakage. Our work helps clarifying the subtle and rich
topological wave physics of continuous media.
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Introduction.—The bulk-edge correspondence is a
widely used principle of topological wave physics, which
allows determining the number of unidirectional edge
modes from the topological properties of the bulk modes
[1–9]. In topological photonic insulators with broken time-
reversal symmetry (nonreciprocal), the relevant topological
invariant is the gap Chern number, i.e., the sum of the
Chern numbers of all bulk modes below the bulk-mode
bandgap, Cgap ¼

P
i Ci. The bulk-edge correspondence

then states that the difference in gap Chern numbers
between the materials forming an interface is equal to
the net number of unidirectional surface modes propagating
along the interface [7–11]. While this principle works well
for topological photonic insulators based on periodic
structures, difficulties arise in the case of continuous
topological materials with no intrinsic periodicity, due to
the absence of a finite Brillouin zone, which may lead to an
ill-behaved response for diverging wave numbers if spatial
dispersion is not included [12–16]. A proof of the bulk-
edge correspondence principle in topological photonics has
been recently published [17], which does require the
inclusion of spatial dispersion (nonlocality), but hinges
on the assumption of an ideally dissipationless structure.
As discussed in the following, however, even if all materials
are assumed lossless (i.e., with no bulk damping), dis-
sipation channels may still be present in a physical
scenario. Thus, questions still remain regarding the pos-
sibility of breaking the bulk-edge correspondence in a
physical system.
In this Letter, we present and discuss two general classes

of violations of the bulk-edge correspondence in continu-
ous topological systems, and we carefully assess the role of
spatial dispersion and dissipation. These two classes are
illustrated in Fig. 1: (i) The number of unidirectional edge

modes is inconsistent with the gap Chern number differ-
ence between the two materials at the interface [Fig. 1(a)];
(ii) The dispersion curve of the unidirectional edge mode
does not span the entire bulk-mode band gap, due to a flat
asymptotic dispersion of the mode at a certain frequency
within the gap [Fig. 1(b)]. Examples of these violations are
easily realized using the simplest possible continuous
topological photonic insulator, namely, a nonreciprocal
(magnetized) plasma. Indeed, it has been known for
decades that, at the interface between a magnetized plasma
and a conductor, unidirectional transverse-magnetic (TM)

FIG. 1. Apparent violations of the bulk-edge correspondence.
(a),(b) Illustration of the typical dispersion diagram for the two
classes of violations studied here. Solid red curves indicate the
surface modes, and solid black curves denote the bulk modes
along the x direction, delimiting the region of the projected bulk
bands (light blue areas). Gray areas highlight the bulk-mode band
gap. (c) Configurations that exhibit class-I violations of the bulk-
edge correspondence. The dispersion diagram in (a) corresponds
to the geometry on the left. (d) Configuration that implements a
class-II violation.
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surface waves appear within the common bulk-mode
band gap [18,19]. Such surface waves are an example of
unidirectional surface plasmon polaritons (SPPs) [15].
Recently, it has been shown that their unidirectional nature
is indeed rooted in the different topological properties of the
trivial conductor and the biased plasma [12,20–28].
Specifically, considering a plasma magnetized along the
�z axis, the TM bulk modes in the plane orthogonal to the
bias exhibit nontrivial topological properties, yielding a gap
Chern number Cgap ¼∓ 1. Here, we use this model system to
study physical configurations that provide apparent counter-
examples to the bulk-edge correspondence.
Class-I violations.—To realize the simplest possible

class-I violation, consider an interface between a biased
plasma and a perfect magnetic conductor (PMC), a configu-
ration considered for example in [15,19] and illustrated in
Fig. 1(c, left). Since a PMC is a topologically trivial insulator,
the difference in gap Chern numbers is ΔCgap ¼ þ1. Thus,
according to the bulk-edge correspondence principle, one
topological TMsurfacemode should emerge across the bulk-
mode band gap.However, noTMsurfacemode is allowed on
this interface, because the PMC boundary “short-circuits”
the magnetic field [29]. This absence of a surface mode
within the band gap directly violates the predictions of the
bulk-edge correspondence. One might argue that, since
PMCs are not natural materials, but have to be realized in
the form of metasurfaces [30], this may be a rather artificial
scenario. However, a closely related configuration that does
not involve a PMC wall, but still violates the bulk-edge
correspondence, is an interface between two oppositely-
biased plasmas [Fig. 1(c, right)]. Indeed, as we recently
showed in [31], the difference in gap Chern numbers is now
ΔCgap ¼ þ2, so one would expect two surface states, but
only one appears, a mode with even-symmetric magnetic
field distribution with respect to the interface. Interestingly,
due to the nature of a magnetic mirror, the surface modes of
the PMC-terminated structure are identical to the odd-
symmetric surface modes of the configuration with oppo-
sitely biased plasmas. This suggests that the origin of the
bulk-edge-correspondence violation and the nature of the
missing mode are the same in both cases.
To elucidate the physical mechanism behind these

violations, we consider again the configuration in Fig. 1
(c, left), but we now include a thin spacer layer, filled with
an isotropic material with permittivity εm, between the
magnetized plasma and the PMC boundary, as shown in
the inset of Fig. 2(a). The following analysis concerns TM
modes, with e−iωt time-harmonic dependence. As usually
done, themagnetized plasma can bemodeled by a gyrotropic
permittivity tensor ε ¼ ε0½ε11It þ ε33ẑ ẑ−iε12ẑ × I�, where
It ¼ I − ẑ ẑ. ε11, ε12, and ε33 follow a standard magnetized
Drude model (see, e.g., [32]). As a realistic example, we
consider the case of a magnetized n-doped semiconductor in
the low THz regime, namely, n-type InSb, a material that has
been studied in several recentworks [15,16,33–35].A typical

sample of this material has plasma frequency ωp=2π ¼
2 THz, electron density Ne ¼ 1.1 × 1022=m3, and bound-
charge contribution to the permittivity function ε∞ ¼ 15.6.
We consider a moderate dc magnetic field of 0.2 T, which is
sufficient to produce amoderately large cyclotron frequency,
ωc=ωp ¼ 0.2.We first consider a lossless and local scenario.
Solving Maxwell’s equations with suitable boundary con-
ditions, it is straightforward to show that the SPPs supported
by the interface between the isotropic spacer and the biased
plasma satisfy the following dispersion equation,

ε11kx þ ε12αp
αpkx − k20ε12

cosðkydÞ −
εmky

k2x − k20εm
sinðkydÞ ¼ 0; ð1Þ

where d is the isotropic spacer thickness, k0 ¼ ω=c, ky ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εm − k2x

p
, αp¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x−k20εeff

p
, and εeff ¼ ðε211 − ε212Þ=ε11.

The blue curve in Fig. 2(a) represents the trajectory of the
SPP wave number, calculated with (1) at a frequency within
the bulk-mode band gap, as the spacer thickness is reduced,
which corresponds to transforming the geometry in Fig. 2(a)
to the configuration in Fig. 1(c, left). From this plot, one can
clearly see that, as d → 0, the SPP wave number tends to
infinity. Hence, this analysis shows that, although the PMC-
plasma configuration in Fig. 1(c, left) does not seem to
support anymode, one topological surfacemodedoes exist in
the asymptotic part of the spatial spectrum for k → þ∞.
As mentioned above, an interface between a magnetized

plasma and a PMC is closely related to the case of two
oppositely biased plasmas. We have recently studied this
configuration in a different context [31], where we showed
that the wave number of the supported odd-symmetric
mode rapidly diverges, as the spacing between the two
plasmas is reduced, fully consistent with the blue curve
trajectory in Fig. 2(a). This asymptotic behavior is indeed

FIG. 2. Class-I violations of the bulk-edge correspondence.
(a) Trajectory of the surface-mode wave number, for the
configuration in the inset, as the separation d is reduced to zero.
Blue and red curves are the trajectories for the local and the
nonlocal case (β ¼ 1.07 × 106 m=s), respectively, at a frequency
within the bulk-mode band gap, ω=ωp ¼ 1.05. (b) Self-consistent
iterative calculation of Landau damping for the configuration in
(a) with d ¼ 0. The inset shows the distribution (time snapshot)
of the SPP electric field normal to the interface, with zero bulk
damping and zero Landau damping (blue) and with the calculated
Landau damping (red).
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the reason for all class-I violations of the bulk-edge
correspondence.
At this point, it is crucial to stress that, since we are

dealing with a mode with very large wave number (in
principle infinite), a simple material model that neglects
dissipative and nonlocal effects, while mathematically
consistent, is not physically accurate [36,37]. We start
by assessing the impact of nonlocal effects, which make the
permittivity a function of the wave vector. Specifically, here
we consider a well-established hydrodynamic treatment of
plasma nonlocalities [15,36]; however, we stress that our
considerations are general since any model of nonlocality
leads to qualitatively similar predictions [38–41]. Most
importantly, nonlocal effects generically lead to a high
spatial-frequency cutoff for the material response [12,36].
Using the hydrodynamic model, the induced free-elec-

tron currents J are governed by the equation [36]:

β2∇ð∇ ·JÞþωðωþ iΓÞJ¼ iωðω2
pε0ε∞E−J×ωcẑÞ; ð2Þ

where β is the nonlocal parameter and Γ is the damping rate
due to absorption losses. By simultaneously solving
Maxwell’s equations and the hydrodynamic equation in
the magnetized plasma, the dispersion equation of the
TM bulk modes can be found as k4β2ω2 − k2½Ωbðω2

pþ
β2k20ε∞Þ þ Ω0� þ k20ε∞Ω0 ¼ 0, where Ωb ¼ ω2 − ω2

p and
Ω0 ¼ Ω2

b − ω2ω2
c. If β ≠ 0, the first term of this equation

leads to the emergence of an additional bulk mode with
respect to the local case [15], which implies that an
additional boundary condition should be included to solve
for the fields in the presence of interfaces. A physically
meaningful choice is J · ŷ ¼ 0 [36], which forces the
normal component of J to vanish at the boundary.
Following this approach, we can assess the impact of
nonlocality on the surface-wave dispersion for the con-
figuration in Fig. 1(c, left) as d → 0. The solid red line in
Fig. 2(a) shows the modified trajectory of the SPP wave
number in the presence of nonlocality. While nonlocalities
have little effect for large separations and small wave
numbers, they become very important at larger values of k:
in contrast to the local case, the SPP wave number does not
diverge, but it stops at a finite value, k ≈ 116.6kp, for d → 0.
This result shows that an SPP with finite wave number is
indeed supported by the PMC-plasma interface. Hence, the
bulk-edge correspondence is formally restored if nonlocal
effects are properly included in the material model.
Interestingly, the presence of this unidirectional surface

mode at a PMC-biased-plasma interface (or between
oppositely biased plasmas) has so far gone unnoticed
(e.g., [15,19]). This is, however, not surprising. Indeed,
even though the SPP wave number does not diverge in the
nonlocal case, it is still very large for any realistic values of
nonlocality [42]. This implies that, first, the SPP mode has
very large wave impedance; therefore, it is very difficult to
excite due to the large impedance mismatch with any

source or feeding mechanism. Most importantly, this mode
is so highly confined to the interface that it becomes
extremely sensitive to absorption. Thus, the topological
mode is quickly damped in the presence of a loss channel of
any type, including phonon and defect scattering, electron-
electron interactions, and interface roughness (or even just
the effective loss due to numerical error and mesh granu-
larity in numerical simulations). Even in the absence of any
scattering loss in the bulk of the considered materials, it is
physically impossible for a surface plasmon-polariton to
experience zero dissipation. Indeed, no matter the intrinsic
quality of the materials and interfaces, the smallest possible
loss is determined by surface-collision-induced Landau
damping, i.e., by the direct excitation of electron-hole pairs
in the plasma by the highly confined electric field on the
interface. Following [44,45], we determine the loss rate due
to Landau damping for the geometry in Fig. 1(c, left) as

ΓL ¼ 3πω

2

R∞
1 q−3jFyðqÞj2dqR

∞
0 ðjFxðqÞj2 þ jFyðqÞj2Þdq

; ð3Þ

where FyðqÞ and FxðqÞ are the Fourier transforms of the
electric-field components, normal and parallel to the inter-
face, and q ¼ k=ðω=vFÞ is a normalized wave number,
where vF is the Fermi velocity, proportional to the nonlocal
parameter β2 ¼ v2Fð35ωþ 1

3
iΓÞ=ðωþ iΓÞ [46,47]. To inves-

tigate the effect of Landau damping, we consider an ideal
sample of InSb with zero intrinsic bulk loss, Γ ¼ 0, and
solve for ΓL and the resulting SPP fields. The correct
solution needs to be found in a self-consistent manner [48].
Figure 2(b) shows the iterative solution steps for ΓL up to
convergence. It can be seen that, even in the absence of bulk
loss, a significant level of Landau damping is present,
ΓL ≈ 0.13ωp, which represents the smallest possible physi-
cal level of loss for this configuration. Surface-induced
Landau damping strongly affects the highly confined
topological surface mode. The inset of Fig. 2(b) compares
the SPP field distributions with and without Landau
damping. The difference is striking: the surface mode dies
out very quickly in the presence of Landau damping, over a
distance of less than 0.03λp (λp is the free-space wave-
length at ωp).
We would like to summarize here the main message of

this section: while the inclusion of nonlocal effects formally
restores the bulk-edge correspondence in the considered
lossless configurations, the correspondence principle is
physically violated since, due to confinement-induced
damping, the surface mode is attenuated almost immedi-
ately even if the considered materials are assumed perfect,
with zero intrinsic bulk losses.
Class-II violations.—To realize a class-II violation of the

bulk-edge correspondence, as illustrated in Fig. 1(b), we
consider an interface between a magnetized plasma and a
trivial opaque medium, as shown in Fig. 1(d). A large
body of work [12,15–19,21–23,28,31] has shown that the
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bulk-edge correspondence appears to correctly predict the
emergence of one topological surface state within the
common bulk-mode band gap of the two materials, con-
sistent with ΔCgap ¼ þ1. If the opaque material is fre-
quency dispersive, following, for instance, a classical
Drude dispersion with plasma frequency ωm

p , the interface
supports a surface-plasmon resonance at a frequency ωSP <
ωm
p at which εm ¼ −ðε11 � ε12Þ. Approaching this fre-

quency, the surface-mode band flattens out and tends to
infinite wave number, as recognized in [15]. Surface-wave
propagation is not allowed at frequencies ωSP < ω < ωm

p .
Thus, if we tune ωm

p such that ωSP falls within the bulk-
mode band gap of the magnetized plasma, as illustrated in
Fig. 1(b), we obtain a common band gap for the two
materials whose lower-frequency portion supports exactly
one topological surface mode, whereas no surface mode
can propagate in the higher-frequency portion of the
band gap.
As a realistic example of this scenario, we consider an

interface between magnetized n-type InSb (same parame-
ters as above) and a dispersive isotropic metal with
parameters given in the caption of Fig. 3. We first consider
a local scenario, and we choose the metal plasma frequency
close to the upper edge of the InSb bulk-mode band gap,
e.g., ωm

p ¼ 1.2ωp. Figure 3(a) shows the dispersion curve

of the unidirectional surface mode supported by this con-
figuration, revealing its flat asymptotic dispersion within the
band gap. This behavior indeed violates the bulk-edge
correspondence, which would predict the presence of one
unidirectional surfacemode spanning the entire band gap.As
for class-I violations, this form of violation is due to the
asymptotic behavior of the surface mode for large wave
numbers, which suggests that nonlocality may again restore
the correspondence. Toverify this,we include hydrodynamic
nonlocalities both in the metal and the magnetized plasma,
following the approach discussed in [15,49].
If nonlocal effects are properly included, the nonphysical

flat asymptotes in the modal dispersion disappear, as
discussed in [15,16] for different scenarios. Indeed, as
shown in Fig. 3(b), in the nonlocal case under consider-
ation, the dispersion curve of the unidirectional SPP bends
upward and monotonically grows with frequency, spanning
the entire band gap. This implies that, for each frequency
within the gap, there exists exactly one unidirectional
surface mode, which is now consistent with the bulk-edge
correspondence. Most importantly, however, we also note
that the dispersion band in Fig. 3(b) becomes significantly
“blurred” at higher frequencies, which is a direct indication
of the migration of the dispersion-equation root (pole of the
system’s Green function) into the complex wave number
plane. Since we assumed that all the materials are lossless, a
complex modal wave number indicates radiation loss: the
bound surface mode has become a “leaky mode” that
gradually loses energy as radiation [50]. This form of
nonlocality-induced radiation leakage was originally pre-
dicted in [49] and recently discussed in [15], where it was
shown that the additional nonlocality-induced bulk mode of
the magnetized plasma provides a continuum of radiation
modes, propagating at different angles, which the surface
mode can couple to, thus leaking energy into the bulk.
Figures 3(c) and 3(d) compare the field distribution of the
SPP mode, in the local and nonlocal cases, at a frequency
near the middle of the band gap: in the nonlocal case, the
unidirectional mode is quickly attenuated over a distance of
less than 0.5λp due to radiation leakage. Much higher
attenuation is obtained at higher frequencies. We also note
that, because of such a strong attenuation, the degree of
confinement of the SPP mode is low (especially compared
to the SPPs in Fig. 2); therefore, the effect of Landau
damping in this configuration is negligible compared to
radiation damping. However, the main finding of this
analysis is essentially the same as in the previous section:
while the inclusion of nonlocal effects formally restores the
bulk-edge correspondence, the correspondence principle is
violated for all practical purposes because the surface mode
is attenuated almost immediately even if the considered
materials are assumed lossless.
Discussion and conclusion.—Both classes of apparent

violations discussed here arise due to the asymptotic
behavior of the photonic bands for diverging wave

FIG. 3. Class-II violations of the bulk-edge correspondence.
(a),(b) Dispersion diagrams (dashed blue lines) of the surface
modes supported by the configuration in Fig. 1(d). The dispersion
diagrams are also plotted as density plots of the inverse
determinant of the boundary-condition matrix. The bright bands
correspond to the SPP poles, with the band becoming blurred if
the pole moves to a complex value of wave number. (a) Local and
lossless case, with β ¼ βm ¼ 0, ωm

p ¼ 1.2ωp and εm∞ ¼ ε∞.
(b) Nonlocal and lossless case with β ¼ βm ¼ 1.07 × 106 m=s.
The dashed white lines indicate the edges of the bulk-mode band
gap. (c),(d) Spatial distributions (time snapshots) of the SPP
electric field normal to the interface, for the local (c) and nonlocal
(d) cases, calculated at the frequency indicated by the white dot in
panels (a),(b).
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numbers. This is possible only for continuous media, with
an infinite Brillouin zone. We note that the presence of
topological surface modes in the asymptotic part of the
spatial spectrum has also been recently recognized in [14],
based on a different approach. Topological photonic
insulators based on periodic structures, e.g., [7,51], are
not expected to exhibit the bulk-edge-correspondence
violations discussed here. For continuous media, we have
shown that the correspondence principle is formally
restored if nonlocal effects are included, consistent with
the correct definition of Chern number in topological
continua, which requires a high spatial-frequency cutoff
as demonstrated in [12,13]. Most importantly, however, we
have shown that, even if the considered materials are
assumed perfect, with zero bulk losses, the “recovered”
surface mode that would satisfy the bulk-edge correspon-
dence is very strongly attenuated due to either confinement-
induced Landau damping, or nonlocality-induced radiation
leakage. We, therefore, conclude that, in the considered
cases, the bulk-edge correspondence principle is violated
for all practical purposes.
Our findings also help clarify the behavior of some

extreme nonreciprocal configurations, such as terminated
one-way waveguides. In a junction between two structures,
one supporting one or more unidirectional modes, and one
that does not support any mode (as in the case of an
interface between a magnetized plasma and a metal
terminated by an orthogonal PMC wall, forming the T-
like junction studied in several recent papers [15,16,
23,34,52–54]), the energy incident on the junction will
not be able to escape. We argue, however, that this situation
does not pose any physical problem (the energy does not
build up indefinitely at the junction or termination), even
assuming media with vanishing losses, since the incident
wave will be dissipated into a so-called “wedge mode”
while the wavelength shrinks to zero, as discussed in
[15,35], and as a result of Landau damping or radiation
leakage, as discussed here.
To conclude, our work identifies, for the first time,

extreme configurations in which the bulk-edge correspon-
dence principle is physically violated. Our findings are
expected to help making more accurate predictions in
topological systems involving uniform media.
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