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We derive the general analytical solution of the viscous hydrodynamic equations for an ultrarelativistic
gas of hard spheres undergoing Bjorken expansion, taking into account effects from particle number
conservation, and use it to analytically determine its attractor at late times. Differently than all the cases
considered before involving rapidly expanding fluids, in this example the gradient expansion converges.
We exactly determine the hydrodynamic attractor of this system when its microscopic dynamics is modeled
by the Boltzmann equation with a fully nonlinear collision kernel. The exact late time attractor of this
system can be reasonably described by hydrodynamics even when the gradients are large.
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Introduction.—Hydrodynamics is an effective theory
describing the dynamics of a many-body system at times
and distances that are considerably larger than any micro-
scopic scale. Such a separation of scales is commonly
characterized by a dimensionless quantity called the
Knudsen number, Kn ¼ l=L, where l is the relevant
microscopic scale, and L is a macroscopic scale associated
with the gradients of conserved currents. Since the seminal
work of Hilbert, Chapman, and Enskog [1,2], hydrody-
namic descriptions have been constructed via truncations of
a systematic expansion of the conserved currents in powers
of the Knudsen number. The zeroth-order truncation of this
gradient expansion leads to the equations of ideal fluid
dynamics, while Navier-Stokes theory corresponds to its
first-order truncation [3].
The large order behavior of the gradient expansion is

generally not well understood and, so far, has only been
studied in a few problems that involve highly symmetrical,
relativistically expanding systems [4]. In such examples,
the series was shown to diverge [4–8] and, hence, in these
cases the gradient expansion cannot be used to systemati-
cally define and improve hydrodynamic formulations. This
motivated the search for alternative ways to define hydro-
dynamics in such a way that it could also be consistent (and
accurate) even when the Knudsen number is not parametri-
cally small [9–28].
The current working hypothesis is that hydrodynamics

may be defined as a universal attractor [5] where the
dissipative currents display universal behavior that is
independent of their initial conditions. This indicates the
emergence of constitutive relations involving the dissipa-
tive currents and the gradients of conserved quantities,
which may be nonperturbative in the Knudsen number
[5,7,8,15] and, therefore, cannot always be expressed in the
form of a simple power series. Attractor solutions are rare
and have only been obtained in simple systems (i.e.,

conformal limit and/or simplified kinetic models) under
highly symmetrical expansion dynamics (i.e., Bjorken [29]
and Gubser flows [30]).
This new understanding of the onset of hydrodynamics is

particularly important in the theoretical description of the
rapidly expanding hot and dense matter produced in
ultrarelativistic heavy-ion collisions, where a fluid dynami-
cal approximation appears to be valid even though the
Knudsen number is large [31,32]. Interest in this open
problem has been renewed since the observation of hydro-
dynamic signatures even in the extremely small and
explosive systems produced in (moderately) high multi-
plicity proton-proton, proton-nucleus, and deuteron or
helium-nucleus collisions [33–35]. If hydrodynamic behav-
ior can indeed emerge even far from equilibrium (where the
Knudsen number is large) in the form of a universal
attractor, this would naturally explain the puzzling obser-
vations found in these hadronic collisions.
In this Letter we investigate the emergence of attractor

behavior in an ultrarelativistic gas of hard spheres under-
going Bjorken expansion. In this system, we prove that the
Knudsen number is constant, which makes it possible to
extract the attractor solution in different regimes. We first
show that the attractor solution can be determined analyti-
cally in Israel-Stewart-like theories derived from the
Boltzmann equation. In this case, we further demonstrate
that the gradient expansion converges absolutely in a finite
range of Knudsen numbers—this is the first example where
such a series converges in an expanding system, which
changes the current view that the gradient expansion is
always an asymptotic series. We then determine for the
first time the hydrodynamic attractor of this system when
its microscopic dynamics is described by the integro-
differential Boltzmann equation with nonlinear collision
kernel (assuming classical statistics), going beyond pre-
vious attractor analyses of kinetic models that were
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restricted to the relaxation time approximation. We show
that both attractors agree when the Knudsen number is
small, but even as the Knudsen number becomes large the
deviations are never parametrically large.
General properties.—We consider a homogeneous ultra-

relativistic gas of hard spheres in Milne coordinates xμ ¼
ðτ; x; y; ςÞ with line element (we set ℏ ¼ c ¼ kB ¼ 1)

ds2 ¼ gμνdxμdxν ¼ dτ2 − ðdx2 þ dy2 þ τ2dς2Þ; ð1Þ

where τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and ς ¼ tanh−1ðz=tÞ. We further

assume that the system is invariant under reflections around
the longitudinal ς axis, which restricts any normalized time-
like four-vector to be of the form uμ ¼ ð1; 0; 0; 0Þ, while
space-like four vectors must vanish. In Cartesian coordi-
nates this corresponds to a system undergoing longitudinal
expansion called Bjorken flow [29].
Under these assumptions the energy-momentum tensor

Tμν is diagonal and can be written as

Tμ
ν ¼ diagðε; P − π=2; P − π=2; Pþ πÞ; ð2Þ

where εðτÞ is the energy density, P ¼ ε=3 is the thermo-
dynamic pressure of the ultrarelativistic gas, and πðτÞ is
the longitudinal component of the shear stress tensor. We
remark that in this system the bulk viscous pressure
vanishes. We shall only take into account binary collisions,
which implies that particle number is conserved. Under
Bjorken flow, the associated particle four current is simply
given by Nμ ¼ ðn; 0; 0; 0Þ, where n ¼ P=T is the particle
density and T is the temperature.
A key feature of Bjorken flow with particle number

conservation is that the dynamics of the particle density
decouples from that of the energy-momentum tensor. The
conservation law, ∇μNμ ¼ 0, leads to a simple equation,

dn
dτ

þ n
τ
¼ 0; ð3Þ

whose solution can be determined analytically regardless of
the microscopic properties of the fluid. One finds

nðτÞ ¼ n0τ0=τ; ð4Þ

where n0 is the particle density at a time τ0. This feature
allows us to determine analytically the mean free path of
the gas of hard spheres, lmfp ¼ 1=ðnσTÞ, which grows
linearly with τ.
The mean free path determines the microscopic scale of

the gas and its linear dependence with τ dramatically affects
the properties of the gradient expansion. This happens
because the macroscopic scale associated with the gradients
of hydrodynamic variables also goes as τ. Therefore, the
Knudsen number, which is given by

Kn ¼ lmfp

τ
¼ 1

n0τ0σT
; ð5Þ

is a constant in Bjorken flow. Hence, we can treat the
Knudsen number as a tunable parameter and study new
situations where the Knudsen number is large but there are
no transient effects.
This behavior is very different than the one found in

conformal systems [36–39], which have been thoroughly
studied before [5]. In this case, themicroscopic scale goes as
∼1=T and the Knudsen number is time dependent since
Kn ∼ 1=ðTτÞ, being thus very large at early times while it
decreases as ∼τ−2=3 when τ is large (we remark in passing
that the dimensionless time variable w ¼ Tτ used in pre-
vious studies [5] is proportional to the inverse Knudsen
number in Bjorken flow). This means that a conformal
system undergoing Bjorken expansion evolves towards
local equilibrium, and the hydrodynamic attractor of such
systems is always well described by relativistic Navier-
Stokes theory at sufficiently late times. Furthermore, it also
means that large Knudsen numbers can only be probed at
early times where transient effects are expected to be
dominant. In this sense, going beyond this idealized sit-
uation is important to understand the cases where the
asymptotic regime remains far from equilibrium, as it occurs
in the dynamics of the quark-gluon plasma formed in
ultrarelativistic heavy-ion collisions. The simplest micro-
scopic systemwhere this can be systematically studied is the
one considered in this Letter.
Analytical solution of viscous hydrodynamics.—We start

our analysis by investigating the hydrodynamic regime of
Israel-Stewart-like theories [40–42] derived from the
Boltzmann equation. In Bjorken flow, energy and momen-
tum conservation, ∇μTμν ¼ 0, is encoded in a single
equation for the energy density,

1

ε

dε
dτ

þ 4

3τ
¼ 4χ

3τ
; ð6Þ

where we introduced the dimensionless quantity χ ¼
π=ð4PÞ. This conservation law is supplemented by a
dynamical equation for χ derived from kinetic theory
[42–44], which reads

τπ
dχ
dτ

þ 4τπ
3τ

χ2 þ τππ
3τ

χ þ χ ¼ η

3Pτ
: ð7Þ

Above, the shear viscosity η, relaxation time τπ , and τππ are
computed from the Boltzmann equation [42–44] and can be
expressed in the following simple form

η ¼ a
T
σT

; τπ ¼ b
η

4P
; τππ ¼ 3λτπ; ð8Þ

where σT is the total cross section and a, b, and λ are
constants. In calculations in kinetic theory within the
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14-moment approximation, one finds a ¼ 4=3, b ¼ 5, and
λ ¼ 10=21. Nevertheless, the results derived in this section
are valid for any positive values of these coefficients.
Using the transport coefficients from (8), the equation for

χ becomes

Kn

�
τ
dχ
dτ

þ 4

3
χ2 þ λχ

�
þ 4

ab
χ ¼ 4

3b
Kn: ð9Þ

One can see that τdχ=dτ depends solely on χ since Kn is
constant, which allows us to analytically solve this equation.
The analytical solution of (9) is

χðτÞ ¼ A
�
1 − c0ðτ0=τÞ8A=3

1þ c0ðτ0=τÞ8A=3

�
−
3

8

ð4þ abλKnÞ
abKn

; ð10Þ

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144þ abKn½72λþ aKnð64þ 9bλ2Þ�

p
8abKn

; ð11Þ

and c0 is an integration constant. The energy density can then
be determined to be

εðτÞ ¼ c1

�
τ0
τ

�4
3
ð1−AÞþðλ=2Þþð2=abKnÞ�

1þ c0

�
τ0
τ

�
8A=3

�
;

where c1 ¼ εðτ0Þ=ð1þ c0Þ is another integration constant.
At sufficiently late times, we see that (10) becomes

independent of its initial condition and χ approaches the
constant value

χatt ¼ A −
3

8

ð4þ abλKnÞ
abKn

: ð12Þ

We remark that this asymptotic value is also a solution of
(9). Therefore, (12) is actually an attractor solution where
the energy density is exactly given by

εattðτÞ ¼ c1

�
τ0
τ

�4
3
ð1−χattÞ

: ð13Þ

Note that all the information about the initial values are
carried by the energy density. While χatt is constant in time,
we remark that it is a nontrivial function of the Knudsen
number and, in principle, all the properties of the gradient
expansion can be extracted from (12). Furthermore, we
stress that here the zeroth-order approximation of the slow-
roll series [5,15,21] gives the exact result for the attractor.
In the gradient expansion, the attractor is expressed as a

power series in Knudsen number. While the expression for
the analytical attractor in (12) is formally singular at
Kn ¼ 0, we note that this is a removable singularity [45]
since limKn→0 χatt ¼ 0. As a matter of fact, one can expand
the square root in (12) in powers of Kn to define a series

that provides an analytical continuation of the attractor that
is regular at the origin. For the sake of simplicity, we focus
on the case where λ ¼ 0, which leads to the series

χatt ¼
X∞
n¼1

χnKnn; ð14Þ

where the expansion coefficients are

χn ¼ a

�
2

3

�
n
� 1

2

nþ1
2

�
ða2bÞ½ðn−1Þ=2�: ð15Þ

This series representation converges absolutelywhen jKnj <
3=ð2a ffiffiffi

b
p Þ. This provides the first example where the

gradient expansion can be shown to converge in a relativ-
istically expanding system. As expected, the first nonzero
term of the series is given by the relativistic Navier-Stokes
value aKn=3 [3]. Furthermore, we note that if one takes
the values of a and b calculated in kinetic theory in the
14-moment approximation, i.e., a ¼ 4=3 and b ¼ 5, the
series converges absolutely when jKnj < 9=ð8 ffiffiffi

5
p Þ ≈ 0.5.

We have checked that similar conclusions are valid when
λ ≠ 0 and that the series in this case converges absolutely
when jKnj < 12=½að

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18b2λ2 þ 64b

p
þ 3bλÞ�.

It was generally expected that the gradient expansion
diverges, at least in the case of rapidly expanding systems.
However, an important exception to a general statement
regarding the divergent nature of the gradient series has
recently come to light from in-depth studies of holographic
fluids in [46–48], which have shown that the near-
equilibrium, linearized spatial gradient expansion con-
verges. A similar problem was also investigated a long
time ago in the context of kinetic theory in [49]. Based on
these results, the authors of Refs. [47,48] argued that a
vanishing radius of convergence should not be interpreted
as a general property of the gradient expansion. Rather,
they suggested that its occurrence in previous examples
may only reflect universal singular features of the flow
displayed by rapidly expanding systems. In this Letter we
show that this may not be the case since the attractor
derived above can be expressed as a convergent series, even
though the system is rapidly expanding. Therefore, the fact
that the system is expanding is not a sufficient condition to
guarantee that the gradient series diverges (nor is expansion
a necessary condition for the divergence of the series. The
gradient expansion was already shown to diverge even in
stationary regimes, see Ref. [50]).
We emphasize that in this system the reliability of

the Navier-Stokes limit is determined by the choice of
the initial particle density n0, initial time τ0, and the value
of the total cross section σT , which determine Kn. If the
Knudsen number is sufficiently small, the late time dynam-
ics of χ will be approximated by Navier-Stokes constitutive
relations. If Kn is not small, but is still within the radius of
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convergence calculated above, the attractor can be system-
atically approximated by higher order truncations of the
gradient series. On the other hand, if Kn is outside the
radius of convergence, the attractor given by (12) cannot be
approximated by the usual constitutive relations associated
with hydrodynamic behavior. The latter is a clear example
of the emergence of hydrodynamics, i.e., the existence
of universal constitutive relations between dissipative
currents and gradients, even when the system is far from
equilibrium.
Hydrodynamic attractor of the Boltzmann equation.—In

this section we obtain the attractor of an ultrarelativistic gas
of hard spheres now from a microscopic perspective using
the Boltzmann equation [51]. For Bjorken flow described
in Milne coordinates (1), the contribution from the
Christoffel symbols cancel exactly, and the Boltzmann
equation becomes [38,39]

k0∂τfk ¼ C½f; f�; ð16Þ

where fk ¼ fðτ; k0; kςÞ is the single particle distribution
function, kμ ¼ ðk0;kÞ is the covariant four-momentum of

the massless particles with k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2ς=τ2

q
. The

nonlinear collision kernel (assuming classical statistics)
reads [52,53]

C½f; f� ¼ 1

2

Z
k0;p;p0

Wkk0→pp0 ðfpfp0 − fkfk0 Þ; ð17Þ

where
R
k¼

R
d3k=½ð2πÞ3τk0�, andWkk0→pp0 is the transition

rate given by

Wkk0→pp0 ¼ τσTsð2πÞ5δð4Þðkμ þ k0μ − pμ − p0
μÞ; ð18Þ

with Mandelstan variable s ¼ 2kμk0μ. Given a solution of
the Boltzmann equation, one can determine any of the
moments of the distribution function, such as the particle
number density n ¼ R

k k0fk, the energy density ε ¼R
k k

2
0fk, and the shear stress tensor determined by

π ¼ R
k ½k20=3 − ðkς=τÞ2�fk.

We note that the spatially homogeneous Boltzmann
equation in Milne coordinates in (16) can be mapped onto
a homogeneous Boltzmann equation in Cartesian coordi-
nates defined in a volume that increases linearly with time,
and with a longitudinal momentum that decreases with time
as kς=τ. Using this, we solved (16) numerically employing
the method outlined in Ref. [54]. We checked that our
results for a conformal system (with σT ∼ 1=T2) reproduce
the numerical solutions of the Boltzmann equation in
Bjorken flow previously performed in Ref. [55].
Since the Knudsen number is constant, the attractor

solution for χ obtained from the Boltzmann equation must
also be constant. As a matter of fact, in this system any
dimensionless quantity constructed using moments of the

Boltzmann distribution must asymptote to a constant.
Therefore, the attractor for χ can be directly extracted
from the numerical solution of the Boltzmann equation
evaluated at sufficiently late times. One can see this in
practice in Fig. 1, where the dynamical evolution of χ,
computed using the Boltzmann equation, is shown for
different values of total cross section. We show several
simulations that start in equilibrium at τ0 ¼ 0.1 fm and
Tðτ0Þ ¼ 0.5 GeV (at vanishing chemical potential), with
σT ∈ ½0.06; 2� fm2. Therefore, each simulation has a differ-
ent value of Knudsen number. It is clear that χ approaches a
constant value at late times, which decreases with increas-
ing σT and, hence, decreasing Kn. As a check, we also
considered a case where τ0 ¼ 1 fm, with the same initial
temperature and chemical potential as before, and verified
that the constant value of χ achieved in this case is the same
as the value found when the cross sections are ten times
smaller. This shows that the attractor solution for the
Boltzmann equation solely depends on Kn.
In Fig. 2, we plot the exact Boltzmann attractor solution

for χ (solid black curve) as a function of Kn. This result is
compared to the analytical attractor solution in Eq. (12)
(dot-dashed blue curve) calculated with transport coeffi-
cients given by the 14-moment approximation. For the sake
of illustration, we also plot the Navier-Stokes approxima-
tion for the attractor (dotted red curve). Both attractor
solutions display similar qualitative features: a linear
behavior at small Kn, well described by Navier-Stokes
theory, which eventually saturates to a given value when Kn
is large. Quantitatively, the attractor solutions agree when
the Knudsen number is small, Kn ≤ 0.1, but even as the
Knudsen number becomes large the deviations are never
parametrically large. As a matter of fact, we note that even
when Kn ≫ 1 the attractors never differ by more than 20%.
Such a small difference between the attractor solution
found within the effective hydrodynamic description
(Israel-Stewart theory), and the corresponding attractor

FIG. 1. Dynamical evolution of π=ðεþ PÞ, computed using the
Boltzmann equation (16), considering different values of the total
cross section. The dashed curves indicate the asymptotic values
of this quantity, which determine the attractor.
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of the full nonlinear Boltzmann equation, is remarkable.
This result suggests that the effective hydrodynamic the-
ories used in heavy-ion collision simulations [56] can be
extremely robust even when the Knudsen number is large.
It would be interesting to check if the Boltzmann

attractor admits a convergent power series representation,
as happened in the case of Israel-Stewart theory. However,
implementing the gradient expansion for the Boltzmann
equation, with the full collision operator, is a very complex
task that has never been performed even in highly sym-
metric setups. So far, this has only been worked out using a
toy model of the collision operator, known as the relaxation
time approximation (RTA) [51], in Refs. [7,8]. Using the
method described in [7], we can at least demonstrate that
the gradient expansion diverges for an ultrarelativistic gas
of hard spheres described by the RTA Boltzmann equation.
While this may indicate that the gradient series also
diverges in the case of the full Boltzmann equation, this
is certainly not a proof and, thus, remains as an open
question in the field.
Conclusions.—In this work we provided a comprehen-

sive analysis of the far-from-equilibrium dynamics of an
ultrarelativistic gas of hard spheres, described by the full
Boltzmann equation, undergoing Bjorken flow. We dem-
onstrated that the Israel-Stewart hydrodynamic equations,
derived from the Boltzmann equation, can be solved
analytically in this case. We then proved that an attractor
solution does exist, and we determined it analytically.
Differently than all the cases considered before involving
rapidly expanding fluids, in this case the gradient expan-
sion converges absolutely in a finite range of Knudsen
numbers. This conclusively shows that the divergence of
the gradient expansion is not a general property of rapidly
expanding systems nor a singular feature of Bjorken flow.
We further found, for the first time, an exact attractor of the
full relativistic Boltzmann equation. We showed that the

Boltzmann attractor and its Israel-Stewart counterpart
qualitatively agree, with visible quantitative deviations
appearing only at large Knudsen numbers, which however
remain 20% at best. This shows that hydrodynamic theories
used in heavy-ion collision simulations can be very
effective, even in the far-from-equilibrium regime where
the Knudsen number is large. It is our hope that the results
presented here may contribute towards understanding the
surprising effectiveness of relativistic hydrodynamics in the
description of the rapidly expanding quark-gluon plasma
formed in hadronic collisions.
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