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We study nonadiabatic effects of geometric pumping. With arbitrary choices of periodic control
parameters, we go beyond the adiabatic approximation to obtain the exact pumping current. We find
that a geometrical interpretation for the nontrivial part of the current is possible even in the nonadiabatic
regime. The exact result allows us to find a smooth connection between the adiabatic Berry phase theory at
low frequencies and the Floquet theory at high frequencies. We also study how to control the geometric
current. Using the method of shortcuts to adiabaticity with the aid of an assisting field, we illustrate that it
enhances the current.
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Introduction.—In 1983, Thouless discovered a phenome-
non called geometric pumping. In electron systems, a slow
periodic variation of control parameters gives a nontrivial
current without bias [1,2]. The mechanism is described by
the geometric Berry phase [3], which shows that it is a
topological phenomenon. While the original study was
applied to a one-dimensional system with a lattice potential,
we can find various processes driven by Berry phase in
mesoscopic quantum dot systems [4], and in stochastic
systems described by the classical master equation [5–13] or
the quantum master equation [14–20]. The experimental
verification can be seen in many works [21–28]. The
pumped system is also interesting from a viewpoint
of stochastic thermodynamics. In small systems with
appreciable fluctuations, by using the method of full
counting statistics [29–31], we can examine the fluctuation
theorem [32–35].
Although the phenomenon is a purely dynamical one, the

theoretical description relies on the static picture. The use
of the adiabatic approximation is crucial not only for
theoretical analysis but also for establishing the geometrical
picture. Since the adiabatic approximation is justified only
at the case when the parameter change is sufficiently slow,
it is important to ask how much the adiabatic description
makes sense for nonideal fast manipulations. It is known
that the geometric phase for nonadiabatic systems is still
useful [36–38], but we have not fully understood the
corresponding phenomenon for the geometric pumping.
A breakdown of the fluctuation theorem in the adiabatic
regime was reported in [39–41] and it is an interesting
problem to study how the nonadiabatic effect changes the

result. While nonadiabatic effects in the geometric pumping
have been studied in many works [42–48], we need a
nonperturbative analytical method to obtain a clear picture
of the nonadiabatic pumping. Establishing the nonadiabatic
description is important not only for finding the funda-
mental properties but also for realizing efficient control of
systems in applications.
In this Letter, we treat the stochastic master equation to

study the nonadiabatic effect. We propose a method
incorporating the effect to the solution of the equation.
We find that a geometrical interpretation is still possible for
the pumping current under modulation with arbitrary speed,
which allows us to discuss controlling the nontrivial
contributions to the current.
Master equation.—The system we treat in this Letter is

coupled to several reservoirs to provide particle transfer.
The process is stochastic and the time evolution of the
system is described by the master equation

d
dt

jpðtÞi ¼ WðtÞjpðtÞi: ð1Þ

jpðtÞi is represented as jpðtÞi ¼ ½p1ðtÞ; p2ðtÞ;…�T where
the ith component represents the probability of the ith
microscopic state of the system being occupied. WðtÞ is a
transition-rate matrix with each component WijðtÞ repre-
senting the transition rate from state j to state i at t. The
system is coupled to reservoirs and WðtÞ is decomposed as

WðtÞ ¼ P
νW

ðνÞðtÞwhere ν labels the reservoirs.WðνÞ
ij ðtÞ is

defined in a similar way. The off diagonal components of
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WðνÞðtÞ are nonnegative and the diagonal components

must satisfy the condition
P

i W
ðνÞ
ij ðtÞ ¼ 0. To find a

nontrivial contribution to the current, we modulate the
system periodically without the average bias between the
left (ν ¼ L) and right (ν ¼ R) couplings.
Assuming that the transition-rate matrix is diagonaliz-

able, we represent the solution of the master equation by an
orthonormal set of the instantaneous left and right eigen-
states of WðtÞ, denoted as fhϕnðtÞj; jϕnðtÞig with the
eigenvalues fϵnðtÞg where n is the index specifying the
corresponding eigenvalue. Since the transition-rate matrix
is non-Hermitian, the left eigenstate is not equal to the
conjugate of the right eigenstate. See the Supplemental
Material [49] for details. We write

jpðtÞi ¼
X
n

CnðtÞe
R

t

0
dt0ϵnðt0Þjϕ̃nðtÞi; ð2Þ

jϕ̃nðtÞi ¼ e−
R

t

0
dt0hϕnðt0Þj _ϕnðt0ÞijϕnðtÞi; ð3Þ

where the dot denotes the time derivative. jϕ̃nðtÞi repre-
sents the eigenstate with a geometric “phase” which is an
analog of the Berry phase, or the Aharonov-Anandan
phase, in quantum mechanics [3,36–38]. This state vector
has the property of the gauge invariance, that is the
invariance under the transformation ½hϕnðtÞj; jϕnðtÞi� →
½hϕnðtÞjR−1

n ðtÞ; RnðtÞjϕnðtÞi� where RnðtÞ ∈ R with
Rnð0Þ ¼ 1. To find the geometric current, we use the
adiabatic approximation, namely, the time dependence of
the coefficientsCnðtÞ is neglected. The physical meaning of
this approximation is that the system follows an instanta-
neous eigenstate of the system when the time variation of
WðtÞ is small. To examine effects of fast driving, we need to
treat mixing between different eigenstates.
The master equation has, at least, one stationary

state with zero eigenvalue. For simplicity, we assume
that this stationary state, denoted with the label n ¼ 1, is
unique. Then, C1ðtÞ ¼ 1 and the other states with n ≠ 1
have negative eigenvalues ϵnðtÞ < 0. The equation for
CnðtÞ with n ≠ 1 is given by

dCnðtÞ
dt

e
R

t

0
dt0ϵnðt0Þ þ

X
mð≠nÞ

CmðtÞe
R

t

0
dt0ϵmðt0Þhϕ̃nðtÞj _̃ϕmðtÞi¼ 0:

ð4Þ

When we consider a slow modulation, we expect that the
time evolution does not make transitions to different
eigenstates. This means that the overlap in the second

term on the left hand side of Eq. (4), hϕ̃nðtÞj _̃ϕmðtÞi ¼
hϕ̃nðtÞj _WðtÞjϕ̃mðtÞi=½ϵmðtÞ − ϵnðtÞ� with m ≠ n, is negli-
gible. In addition, in systems described by the master
equation, we have an exponentially decaying factor

e
R

t

0
dt0ϵmðt0Þ for m ≠ 1, which further justifies the approxi-

mation. The factor is absent form ¼ 1with ϵ1ðtÞ ¼ 0 and it
is reasonable to keep this term. Then, neglecting the
contributions with m ≠ 1, we obtain a nonadiabatic
approximate solution

jpðtÞi ≃ jϕ̃1ðtÞi þ
X
n≠1

ðδnðtÞ þ Cne
R

t

0
dt0ϵnðt0ÞÞjϕ̃nðtÞi; ð5Þ

where Cn is a constant determined from the initial con-
dition, and

δnðtÞ ¼ −
Z

t

0

dt0hϕ̃nðt0Þj _̃ϕ1ðt0Þie
R

t

t0 dt
00ϵnðt00Þ: ð6Þ

See the Supplemental Material [49] for details of the
derivation. The adiabatic approximation for jpðtÞi is
obtained by setting δnðtÞ ¼ 0. δnðtÞ depends on the whole
history of the time evolution and represents nonadiabatic
effects. This function is not periodic in t even whenWðtÞ is
periodic. However, it rapidly falls into a periodic behavior
at large t. δnðtÞ falls into the same trajectory after transient
evolutions at first several periods [49]. A similar function
appears in quantum systems to treat a nonreciprocal
effect for Landau-Zener tunneling [50], where the function
was evaluated by using a contour integral in a complex
plane.
Pumping current.—Using the solution of the master

equation (1), Eq. (5), we can evaluate the current through the
system. Formally, it can be defined by introducing a counting
field [9]. To make the discussion concrete, we treat the two-
state case where the number of the components of jpðtÞi is
two and Eq. (5) becomes the exact solution. When we set
that the first (second) component of jpðtÞi represents
the probability that the system is empty (filled), the average
current through the system from the left to right reservoirs

is given by J ¼ limT→∞ð1=TÞ
R
T
0 dt(WðRÞ

12 ðtÞp2ðtÞ−
WðRÞ

21 ðtÞp1ðtÞ) [49]. In this expression, the long-time aver-
aged current is independent of the initial condition and of the
last term in the brackets of Eq. (5). This implies that we can
calculate the exact current by using the approximated state in
Eq. (5) even if we go beyond the two-state case. The
neglected term in Eq. (4) incorporates an exponentially
decaying factor and does not contribute to the current after
the second modulation cycle.
In the adiabatic approximation for the current, J is given

by the sum of the dynamical part Jd and the geometric part
Jg. The former is given by the dynamical “phase” term and
the latter by the geometric term [9]. In the present treat-
ment, the dynamical part is the same and the geometric part
is separated into the adiabatic part and the nonadiabatic part
Jg ¼ Jad þ Jnad. The explicit form of each part is respec-
tively given by
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Jd ¼
1

T0

Z
T0

0

dt
kðLÞin ðtÞkðRÞout ðtÞ − kðLÞout ðtÞkðRÞin ðtÞ

kinðtÞ þ koutðtÞ
; ð7Þ

Jad ¼
1

T0

Z
T0

0

dtpðRÞðtÞ d
dt

poutðtÞ; ð8Þ

Jnad ¼ lim
T→∞

1

T0

Z
TþT0

T
dtpðRÞðtÞ d

dt
δ2ðtÞ; ð9Þ

where we putW12ðtÞ¼ koutðtÞ¼ kðLÞout ðtÞþkðRÞout ðtÞ,W21ðtÞ¼
kinðtÞ¼ kðLÞin ðtÞþkðRÞin ðtÞ, and pðRÞðtÞ ¼ ½kðRÞin ðtÞ þ kðRÞout ðtÞ�=
½kinðtÞ þ koutðtÞ�, poutðtÞ ¼ koutðtÞ=½kinðtÞ þ koutðtÞ�. Here,
kinðtÞ represents the incoming rate and koutðtÞ the outgoing
rate, and the superscript denotes the coupling to the left
or right reservoir. We consider the case where each
parameter is represented as a function of ωt with the
period T0 ¼ 2π=ω. The dynamical part is independent of ω
and is negligible for no-biased pumping. Jad is represented
by using the geometric term and is proportional to ω.
Therefore, within the adiabatic approximation, the current
is enhanced by increasing ω, though the expression is only
valid in the limit ω → 0. This behavior is interfered by
the presence of Jnad. We stress that the above form of the
current is exact. By knowing the explicit form of the
nonadiabatic part, we can optimize the current as we
discuss below. It is a straightforward task to find a similar
expression of the current in general multilevel systems.
Geometrical picture.—The nonadiabatic part, Eq. (9),

has a similar form to the adiabatic part, Eq. (8), which leads
to a geometrical interpretation. Suppose that we control the
system by using two time-dependent periodic parameters
kðtÞ ¼ ½k1ðtÞ; k2ðtÞ�. The adiabatic current Jad arises only
when the orbit of k encloses a finite area. The adiabatic
current is represented by a flux penetrating the surface. This
geometrical picture is also applied to the nonadiabatic part.
We extend the parameter space and introduce a third axis
k3 ¼ δ2. Although δ2 is a function of k1 and k2, we leave it
independent for the moment and use the relation after
the calculation. In the extended space k̃ ¼ ðk; k3Þ, Jg is
written as

Jg ¼
I
C̃
dk̃ · AðkÞ ¼

Z
S̃
dS̃ðk̃Þ · BðkÞ; ð10Þ

where C̃ represents the closed contour in the k̃ space and
AðkÞ is the “gauge field”:

AðkÞ ¼ ω

2π

0
B@

pðRÞ∂1pout

pðRÞ∂2pout

pðRÞ

1
CA: ð11Þ

This vector function is independent of k3. The adiabatic
part is represented by the first and second components of A
and the nonadiabatic part is by the third component. We can

introduce the corresponding “magnetic field” BðkÞ ¼
∇ × AðkÞ. The third (first and second) component of
BðkÞ corresponds to the adiabatic (nonadiabatic) part.
Using the Stokes theorem, we obtain the last expression
in Eq. (10). The integral represents a surface integral where
the surface S̃ is defined by using the closed contour C̃. This
is pictorially represented as in Fig. 1. This surface is not
unique and we can consider a convenient choice. This
geometrical representation does not mean that the result is
independent of the control speed. B is written in terms of
purely geometric variables k1 and k2, but the third axis is
determined by the dynamics.
Structure of the transition-rate matrix.—Since the cur-

rent is linear in W, the decomposition of the current can
also be applied to the transition-rate matrix as WðtÞ¼
WdðtÞþWgðtÞ. The explicit form of WgðtÞ is given by

WgðtÞ ¼ ð _poutðtÞ þ _δ2ðtÞÞ
�

1 1

−1 −1

�
: ð12Þ

The solution of the master equation jpðtÞi is given by
the adiabatic state of WdðtÞ. WgðtÞ is interpreted as a
counterdiabatic term known in shortcuts to adiabaticity
[49,51–56]. It has a geometrical meaning [57], which is
consistent with the geometrical interpretation for Jg.
Using the decomposition of WðtÞ, we can also find a

relation to the Floquet theory. The time-evolution operator
UðtÞ ¼ T exp (

R
t
0 dt

0Wðt0Þ), where T is the time-ordering
operator, is written at t ¼ T0 ¼ 2π=ω as UðT0Þ ¼ eT0WF to
define the effective transition-rate matrix WF. Since the
solution of the master equation is characterized as a
stationary state of WF, WF must be related to WdðtÞ. In
fact, we can write

WF ¼ k̄
kinð0Þ þ koutð0Þ

WdðT0Þ − e−2πk̄=ωWdð0Þ
1 − e−2πk̄=ω

; ð13Þ

FIG. 1. Trajectories in the parameter space. When we consider a
periodic trajectory C in the ðk1; k2Þ plane, k3 is changed
accordingly and we have a closed contour C̃. The current is
determined by the magnetic field penetrating a surface S̃ specified
by C̃ ¼ ∂S̃.

PHYSICAL REVIEW LETTERS 124, 150602 (2020)

150602-3



where k̄ ¼ ð1=T0Þ
R T0

0 dt½kinðtÞ þ koutðtÞ�. See the
Supplemental Material [49] for details. In the adiabatic
limit ω → 0, we find WF ∼WdðT0Þ, which is consistent
with the above consideration. In the opposite limit, the
function can be expanded in powers of 1=ω, which is
equivalent to the Floquet-Magnus expansion [58,59]. This
relation is useful since we can find the decomposition of
WðtÞ by using the expansion at high frequencies.
Nonadiabatic effects on geometric current.—A typical

behavior of the current is shown in Fig. 2. We use a similar
protocol as used in Ref. [9]. Since we use a protocol with no
net bias, the dynamical current is negligibly small. At low
ω, the adiabatic current is dominant, which is proportional
toω. It is considerably disturbed by the nonadiabatic effects
at high ω. The total current approaches zero as 1=ω, as is
found from the Floquet-Magnus expansion. Thus, the
nonadiabatic effect inhibits the linearity of the geometric
current with respect to ω.
The behavior of the current is understood from the

geometrical picture. Since the third component of the flux
B3ðkÞ ¼ ∂1A2ðkÞ − ∂2A1ðkÞ determines the adiabatic cur-
rent, the geometric current coincides with the adiabatic
current if the trajectory C̃ is parallel to the ðk1; k2Þ plane. In
Fig. 2, we see that, as the frequency increases, the trajectory
is distorted from a flat plane to cancel out the adiabatic part.
In Fig. 3, we plot the current when the trajectory C is

slightly deformed while keeping the dynamical current
invariant (see the Supplemental Material [49] for details).
We still observe nonadiabatic effects affecting linear
growth. To keep the adiabatic current, we need to design

the protocol such that the plane is kept parallel to the
ðk1; k2Þ plane. Since we cannot choose the trajectory C̃
arbitrary, this is a difficult problem in general.
Assisted adiabatic pumping.—To obtain a desirable

enhancement of the geometric current, we use a method
of counterdiabatic driving.We introduce the counterdiabatic
term into the original transition matrix so that the adiabatic
state of the original matrix becomes the exact solution.
Although the idea is implemented for the Schrödinger
equation for isolated quantum systems, the generalization
to other equations such as the master equation and the
Fokker-Planck equation is a straightforward task. We can
find several applications in previous studies [60–63].
In the master equation, the transition-rate matrix is

diagonalized as WðtÞ ¼ P
n ϵnðtÞjϕnðtÞihϕnðtÞj and the

adiabatic state is defined by Eq. (2) with time-independent
coefficients fCng. We modify the transition-rate matrix
WðtÞ → WðtÞ þWCDðtÞ so that the solution of the modi-
fied master equation is given by the adiabatic state. The
counterdiabatic term WCDðtÞ is given by

WCDðtÞ ¼
X

m;nðm≠nÞ
jϕmðtÞihϕmðtÞj _ϕnðtÞihϕnðtÞj: ð14Þ

For the two-state case, WCDðtÞ can be explicitly written as

WCDðtÞ ¼ _poutðtÞ
�

1 1

−1 −1

�
: ð15Þ

This form is slightly different from WgðtÞ in Eq. (12). We
see that the addition of the counterdiabatic term is obtained
by replacements kinðtÞ → kinðtÞ − _poutðtÞ and koutðtÞ →
koutðtÞ þ _poutðtÞ. Since these variables represent the tran-
sition rates, j _poutðtÞj cannot be large and the method fails
for rapid changes of parameters.
The inclusion of the counterdiabatic term ensures that the

exact solution of the master equation is given by the
adiabatic state of the original transition-rate matrix. kinðtÞ
and koutðtÞ are, respectively, represented by the sum of the
left and right parts and we still have degrees of freedom to

FIG. 3. Left: Elliptic trajectories (1–4) keeping the dynamical
current invariant. The dashed line represents the original protocol
used in Fig. 2. Right: The corresponding total current. The
dynamical part is zero in each protocol. See the Supplemental
Material [49] for details.

FIG. 2. The frequency dependence of the current (top right)
and trajectories in the parameter space at several values of ω. We

set k1¼kðLÞin ðtÞ¼k0ð1þ1
2
cosωtÞ, k2 ¼ kðRÞin ðtÞ ¼ k0ð1þ 1

2
sinωtÞ,

kðLÞout ¼ k0, and kðRÞout ¼ k0. All the quantities are plotted in
unit of k0.
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implement the counterdiabatic term. We can use them to
keep the dynamical part of the current invariant and to set
that the geometric part of the current is given by the adiabatic
part of the original current without assist [49].
Although the above procedure works in principle, we

have no clear picture on how the assisting field enhances
the current. In addition, the manipulation is restricted in
realistic situations and we cannot control each element
in the transition-rate matrix independently. In our choice in
the above examples, we set that kout is time independent.
The introduction of the counterdiabatic term inevitably
breaks this condition. To keep the time independence of
kout, we can consider scaling. After the introduction of the
counterdiabatic term, we write the transition-rate matrix as

WðtÞþWCDðtÞ¼
�
1þ _poutðtÞ

kout

�
0
BBB@
−

1− _poutðtÞ
kinðtÞ

1þ _poutðtÞ
kout

kinðtÞ kout

1− _poutðtÞ
kinðtÞ

1þ _poutðtÞ
kout

kinðtÞ −kout

1
CCCA:

ð16Þ

The prefactor of the right-hand side is positive and is
scaled out by the redefinition of the timescale as
dt̃ ¼ dt½1þ _poutðtÞ=kout�. We still have a degree of freedom
to decompose the new component kinðtÞ into the left and
right parts and use it to keep the dynamical current
invariant. In this case, the geometric current is not equal
to the adiabatic current in the original system and is not

proportional to the frequency. However, we confirm that the
deviation is not so large and the geometric current can be
kept growing as a function of the frequency. The result is
shown in Fig. 4 (see the Supplemental Material [49] for
details). The obtained protocol indicates that we need to
shift the oscillation of the assisting field to the left
compared to the original one to prevent the deviation.
The required field becomes larger when we consider faster
driving and the control fails at some frequency where
j _poutðtÞj exceeds the threshold.
In Fig. 4, we also plot the current fluctuation that is

decreasing by the introduction of the assisting field.
Generally, the counterdiabatic term leads to an increase
in the energy cost characterized by the fluctuation and a
broadening of the work distribution [64,65]. This expect-
ation, i.e., the increment of the fluctuation for the geometric
part under the assisting field, is verified as can be seen on
the bottom right panel of Fig. 4. Although we cannot
control the dynamical part of the fluctuation as we did for
the average, we find a decrease of the total fluctuation as a
result of the decrease of the dynamical fluctuation. The
suppression of the fluctuations implies the stability of the
assisted driving. A variational formulation of the counter-
diabatic driving for quantum systems also indicates a stable
driving [66]. In the Supplemental Material [49], we
examine several examples to confirm the stability by
slightly modifying the amplitudes in several ways.
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Note added in the proof.—After the completion of this
work, we learned about Ref. [67] where a similar method is
used for adiabatic pumping.
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Guéry-Odelin, and J. G. Muga, Fast Optimal Frictionless
Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity,
Phys. Rev. Lett. 104, 063002 (2010).

[55] E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M.
Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt,
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