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The McLachlan “minimum-distance” principle for optimizing approximate solutions of the time-
dependent Schrödinger equation is revisited, with a focus on the local-in-time error accompanying the
variational solutions. Simple, exact expressions are provided for this error, which are then evaluated in
illustrative cases, notably the widely used mean-field approach and the adiabatic quantum molecular
dynamics. Based on these findings, we demonstrate the rigorous formulation of an adaptive scheme that
resizes on the fly the underlying variational manifold and, hence, optimizes the overall computational cost
of a quantum dynamical simulation. Such adaptive schemes are a crucial requirement for devising and
applying direct quantum dynamical methods to molecular and condensed-phase problems.
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Introduction.—Variational principles play a major role in
quantum dynamics, since they allow one to devise general
strategies to evolve wave functions on parametrized mani-
folds, in such a way as to mimic as much as possible the
exact quantum mechanical evolution. They are crucial to
tackle quantum dynamical problems in many dimensions
and in complex environments. There exist at least three
different time-dependent variational principles, namely, the
McLachlan variational principle (MVP) [1], the time-
dependent variational principle (TDVP) [2], and the
Dirac-Frenkel variational principle (DFVP) [3,4], which
are known to be equivalent to each other under mild
conditions [5], usually satisfied in practice. However, these
three variational principles have different origins and
limitations, and, indeed, only the first one represents a
well-founded, general optimization scheme. The reason is
that the DFVP

hδΨjðiℏ∂t −HÞjΨi ¼ 0 ð1Þ

is not, strictly speaking, a variational principle, since it is
not a functional variation—in the sense that it does not refer
to an action functional—but just a condition which defines
an optimization problem. It closely resembles, but is
stronger than, the condition

RehδΨjðiℏ∂t −HÞjΨi ¼ 0 ð2Þ

that results from the TDVP, which is indeed a stationary-
action principle, δS ¼ δ

R tf
ti L½Ψt�dt ¼ 0, with the real

Lagrangian (here for normalized wave functions)

L½Ψt� ¼
iℏ
2
ðhΨtj _Ψti − h _ΨtjΨtiÞ − hΨtjHjΨti:

This is rather appealing because of its formal resemblance
with the classical stationary-action principle (and the
ensuing possibility of a Hamiltonian dynamics of the
variational parameters [2]), but it seems flawed due to
the double-ended boundary condition jδΨtfi ¼ jδΨtii ¼ 0.
The latter is incongruous with a first-order equation in time
(the time-dependent Schrödinger equation) which the
TDVP is meant to replace (see, e.g., Ref. [6]). A similar
stationarity condition,

Imhδ _Ψjðiℏ∂t −HÞjΨi ¼ 0 ð3Þ

defines the MVP which, contrary to the above two, is
firmly rooted in purely geometrical ideas. Despite this,
McLachlan’s principle is perhaps the least popular of the
three, first because the presence of the time derivative of the
wave function variation (δ _Ψ) makes it less intuitive, and,
second, because the above-mentioned equivalence of the
three principles led researchers to focus on the DFVP
and the TDVP, which admit an immediate physical
interpretation.
In this Letter, we revisit the MVP “geometrical” prin-

ciple and exploit some basic, hitherto unexplored, conse-
quences. Specifically, we will consider the local-in-time
error (LITE) associated with the MVP, and, after presenting
some illustrative examples, we make use of this error to
introduce a “natural” adaptive propagation scheme.
The McLachlan minimum-distance principle.—In the

following, it is assumed that the wave functions we deal
with lie on a manifoldM ⊆ H (the “variational manifold”)
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that admits a smooth parametrization, i.e., jΨi≡ jΨðxÞi,
where x ∈ Ω ⊆ Rn and the ∂jΨi=∂xi’s and ∂2jΨi=∂xi∂xj’s
are well-defined vectors of the Hilbert space H of the
system. For simplicity, we assume thatM contains its rays,
in order to allow normalization of the wave function. The
directional derivative along u ∈ Rn at x0 is given by

jδuΨ0i ¼
djΨðx0 þ suÞi

ds

����
s¼0

¼
Xn
i¼1

ui
∂jΨðxÞi
∂xi

����
x¼x0

and defines a generic “variation” of jΨ0i ¼ jΨðx0Þi (i.e.,
alongu). The vectors jδiΨ0i≡ ∂jΨi=∂xijx¼x0 (i ¼ 1;…; n)
span a linear space of dimension n, denoted as T0M, which
is the space tangent toM in jΨ0i. This linear space is real, as
long as the manifold coordinates are real parameters, which
is the most general case. Occasionally, one maymake use of
complex (analytic) parametrizations, and in that case T0M
becomes a complex linear space, a sufficient condition for
the equivalence of the above variational principles [5].
Suppose we are given jΨ0i ∈ M as an initial state for a

short-time dynamics of time dt. The best choice for
jΨ0ðdtÞi ∈ M, the time-evolved state, should minimize
the distance from the exact solution jΨexact

0 ðdtÞi, or,
equivalently,

ℏε ¼ kiℏ _Ψ0 −HΨ0k;

upon introducing the error per unit time ε. When applying
the stationarity condition with respect to variations of j _Ψ0i,
one recovers the McLachlan condition [Eq. (3)] for jΨ0i.
Furthermore, upon exploiting the invariance of the mani-
fold under scalar multiplication, one obtains norm con-
servation, since for jδ _Ψ0i ¼ δ_λjΨ0i (with δ_λ arbitrary
complex) the MVP condition gives

iℏhΨ0j _Ψ0i ¼ hΨ0jHjΨ0i; ð4Þ

which implies 2RehΨ0j _Ψ0i¼dhΨ0jΨ0i=dt¼0. At the same
time, one sees that the gauge is fixed to ℏ ImhΨ0j _Ψ0i ¼
−hΨ0jHjΨ0i, that is, precisely that of the exact solution,
iℏj _Ψexact

0 i ¼ HjΨ0i. Henceforth, without loss of generality,
we deal with normalized wave functions.
We consider the optimization of the path when the time

dependence in jΨti comes only from variational parameters
and rewrite Eq. (3) in the form

ImhδΨ0jðiℏ∂t −HÞjΨ0i ¼ 0; ð5Þ
since, under such circumstances, jδ _Ψ0i is just an arbitrary
element of T0M. Equation (5) is only apparently similar
to Eq. (2), as becomes clear when evaluating it for
jδΨ0i ¼ j _Ψ0i, the time derivative of the variational solution
which is a legitimate element of T0M. Equation (5) indeed
gives

ℏh _Ψ0j _Ψ0i ¼ Imh _Ψ0jHjΨ0i; ð6Þ

which is a genuine consequence of the McLachlan prin-
ciple [7]. Equation (6) immediately leads to a “bounded-
ness theorem”

ℏk _Ψ0k ≤ kHΨ0k; ð7Þ

but it is actually more powerful, as is shown in the
following.
Local-in-time error.—The value of the distance at the

variational minimum, denoted as εM,

εM½Ψ0� ¼ ℏ−1minu∈T0Mkiℏu −HΨ0k;

is a functional of jΨ0i, depending on the chosen manifold
M. It represents the distance of the manifold M from the
exact short-time solution originating in jΨ0i, i.e., a local-in-
time measure of the performance of the variational method
associated to M. Importantly, it also sets an a posteriori
upper bound to the wave function error [8]

kΨ0ðtÞ −Ψexact
0 ðtÞk ≤

Z
t

0

εM½Ψ0ðτÞ�dτ ð8Þ

and can therefore be used to minimize the error over time
when acting on M (see Supplemental Material [9]). Using
Eq. (6), one finds

ε2M½Ψ0� ¼
1

ℏ2
ðkHΨ0k2 − ℏ2k _Ψ0k2Þ; ð9Þ

which is a simple, exact expression for the LITE. When
T0M is complex linear, this is a consequence of the fact
that the variational condition can be recast as an orthogonal
projection [8], namely, iℏj _Ψ0i ¼ P0HjΨ0i, where P0 is
the projector onto T0M; however, this condition is not
necessary for Eq. (9) to hold, when the MVP is used. In the
following, we show how ε2M can be used in practice to
assess quantitatively the quality of a variational approxi-
mation and how to improve it when necessary.
We first rewrite Eq. (9) in a more appealing form, since it

is invariant under a shift of the Hamiltonian (H → Hϵ ¼
H − ϵ) provided, of course, the gauge is modified accord-
ingly [jΨ0i → jΨϵ

0i ¼ exp½þði=ℏÞϵt�jΨ0i]. Hence, it is
convenient to choose as the reference energy the average
energy of the state jΨ0i, denoted as Ē0, resulting in the

corresponding “standard” gauge jΨþ
0 i ≔ jΨĒ0

0 i. With this
gauge, Eq. (9) takes the form

ε2M½Ψ0� ¼
1

ℏ2
ðΔE2

0 − ℏ2k _Ψþ
0 k2Þ; ð10Þ

where j _Ψþ
0 i satisfies hΨ0j _Ψþ

0 i¼0 and ΔE2
0¼hðH−Ē0Þ2i0,

the energy variance, represents ℏ2 times the “intrinsic”
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squared length of the exact time derivative of the state
vector [10] (see Fig. 1). Interestingly, when the equations of
motion can be recast in the form iℏj _Ψþ

0 i ¼ HvjΨ0i, where
Hv is a “variational” (self-adjoint) Hamiltonian operator
[12], the error becomes a measure of the ability of M to
account for the energy fluctuations:

ε2M½Ψ0� ¼
1

ℏ2
ðΔE2

0 − ΔE2
v;0Þ;

where ΔE2
v;0 ¼ hΨ0jH2

vjΨ0i is the variance of the “effec-
tive” energy (ΔE2

v;0 ≤ ΔE2
0).

The above result can be generalized to the case in which
the manifold M is time dependent, M ¼ MðtÞ, and the
time derivative of the wave function contains both a
variational [j _Ψvi ∈ T0Mð0Þ] and a nonvariational (j _Ψni)
contribution, i.e., j _Ψ0i ¼ j _Ψvi þ j _Ψni; see Supplemental
Material [9] for details.
Examples.—As a first example, we consider a simple

one-dimensional system whose wave function jΨ0i is
constrained to have a Bargmann form [13,14], jΨ0i ¼
C exp ðza†Þj0i, where a is the usual phonon annihilation
operator, j0i is the vacuum state, and C; z ∈ C parametrize
the vector [equivalently, setting C ¼ expð−jzj2=2Þ, one
can use a normalized vector jzi which is known as the
coherent state (CS) in standard form]. A straightforward
calculation gives the equation of motion for z, _z ¼
iℏ−1hΨ0j½H; a�jΨ0i=hΨ0jΨ0i, and the error ℏ2ε2 ¼
ΔE2

0 − ℏ2j_zj2 (see Supplemental Material [9] for details).
This error vanishes when H takes a harmonic form, and, in
general, for H ¼ ðp2=2mÞ þ V, it reads as follows, to
lowest order in the spatial width Δq of the wave packet:

ℏε ≈ Δq2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Δ4

2
þ
�jVð3Þ

0 j2
6

þmΔ2

2
Vð4Þ
0

�
Δq2

s
;

where VðnÞ
0 is the nth derivative of the potential evaluated at

the average position of the wave packet,mΔ2¼Vð2Þ
0 −mω2,

and ω ¼ ℏ=2mΔq2 (see Supplemental Material [9]). In
locally harmonic potentials (Vð2Þ > 0), one may set Δq to
make the first term on the rhs vanish and obtain

ℏε ≈ ℏ3jVð3Þ
0 j=8 ffiffiffi

6
p ½mVð2Þ

0 �3=2. In general, however, this
result only holds at t ¼ 0 if Δq is kept frozen.
As a second example, let us consider the general

N-particle Hamiltonian H ¼ P
N
i¼1 hi þ V (where hi are

one-particle operators and V is a many-body interaction
potential) and the mean-field ansatz of the time-dependent
Hartree (TDH) method, jΨ0i ¼ ΠN

i¼1jϕii, where the
ϕi’s are variational single-particle functions (SPFs),
subject only to the normalization condition hϕijϕii ¼ 1.
Application of the Dirac-Frenkel condition [Eq. (1)] gives
the well-known equations of motion of the SPFs and the
total time derivative of the state vector in the standard
gauge:

iℏj _Ψþ
0 i¼H0

mf jΨ0i; H0
mf ¼

XN
i¼1

ðH0
i − Ē0Þ; hH0

mfi¼ 0;

whereH0
i is the mean-field Hamiltonian for the ith degree of

freedom andH0
mf is the appropriate variational Hamiltonian

for the problem (see Supplemental Material [9] for details).
The energy variance can be formulated in terms of themean-
field energy variance ΔE2

mf;0 ¼ hðH0
mfÞ2i:

ΔE2
0 ¼ ΔE2

mf;0 þ ΔV2
0 þ 2

XN
i¼1

RehH0
iΔVi0

with the help of the zero-mean fluctuating potential ΔV ¼
V þ ðN − 1ÞhVi −P

N
i¼1 vi and its varianceΔV2

0 ¼ hΔV2i0
(vi is the ith mean-field potential). Hence, we find the
following expression for the correlation error intrinsic in the
TDH method:

ℏ2ε2mf ¼ ΔV2
0 þ 2

XN
i¼1

RehH0
iΔVi0;

showing the key role played by the potential energy
fluctuations in limiting the reliability of the mean-field
approach.
Finally, we consider the error intrinsic to the adiabatic

(Born-Oppenheimer) dynamics, a common strategy to
tackle molecular problems where the electronic degrees
of freedom are averaged out with the well-known ansatz

jΨ0i ¼
Z

dXψðXÞjΦnðXÞijXi:

FIG. 1. Schematics illustrating the LITE (indicated as ε) when
M contains its rays and T0M is complex linear. Here, the sphere

represents the unit sphere of normalized vectors, and j _Ψk
0i and

j _Ψ⊥
0 i≡ j _Ψþ;exact

0 i are the “irrelevant” and “relevant” components
of the exact time derivative, given by ðiℏÞ−1Ē0jΨ0i and
ðiℏΔE0Þ−1ðH − Ē0ÞjΨ0i, respectively [10].
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Here X represents the nuclear degrees of freedom, and
jΦnðXÞi is the nth eigenstate of the electronic Hamiltonian
with clamped nuclei at X. Application of the variational
principle gives the equation of motion for the “nuclear
wave function” ψðXÞ in the nth electronic state

Hnψ ¼ iℏ
∂ψ
∂t ; Hn ¼ hTin þ EnðXÞ;

where EnðXÞ is the electronic energy and

hTin ¼ T − i
X
i

ℏ
Mi

�
Φn

���� ∂Φn

∂Ri

�
el
Pi

−
X
i

ℏ2

2Mi

�
Φn

���� ∂2Φn

∂R2
i

�
el

is a self-adjoint operator, the nuclear kinetic energy
operator averaged over the electronic state. Then, as shown
in the Supplemental Material [9], a simple calculation gives
the LITE in the form

ε2½Ψ0� ¼
1

ℏ2

Z
dXψ�ðXÞ½hT2in − hTi2n�ψðXÞ;

showing explicitly the crucial role played by the nuclear
kinetic energy fluctuations in the adiabatic approximation.
Adaptive propagation schemes.—Equation (10) leads to

a rigorous criterion to resize the underlying variational
manifold on the fly in order to keep the error below a
specified tolerance [see also Eq. (8)]. We focus here on the
“spawning” process, i.e., the generation of new states for
expanding the target wave function; the opposite “pruning”
process can be accomplished by standard population
analysis. We now consider the error reduction at the time
of spawning, when the time derivative of the variational
wave function is changed from j _Ψi to j _Ψsi, by expanding

the basis, while the wave function remains unchanged.
According to Eqs. (10) and (6), the reduction of the squared
error due to spawning takes the form

Δε2s ¼ k _Ψþ
s k2 − k _Ψþk2 ¼ ℏ−1Imhδ _ΨjH − ĒjΨi; ð11Þ

where jδ _Ψi≡ j _Ψsi − j _Ψi describes the extra flexibility of the
enlargedmanifoldMs ⊃ M and Ē is the averageenergy.The
vector jδ _Ψi is orthogonal to jΨi, since, under our assump-
tions, Eq. (4) holds for both the original and the spawned
manifolds. Furthermore, if energy is similarly conserved in
bothM andMs, we also have Rehδ _ΨjHjΨi¼0 and Eq. (11)
simplifies to

Δε2s ¼ ðiℏÞ−1hδ _ΨjHjΨi: ð12Þ

Equation (11) [or Eq. (12) when appropriate] can be used to
optimize spawning by generating a state that is most effective
in minimizing the error [15].
To illustrate this “natural” spawning process, we con-

sider again a one-dimensional system and describe its wave
function as a superposition of CSs, i.e., by means of a set of
nonclassically evolving "quantum trajectories” and asso-
ciated amplitude coefficients [16–18]. This approach has
already been employed in on-the-fly applications for
molecular systems [18]. In this case, spawning amounts
to adding a new CS jzsi (initially with zero amplitude cs),
and the task is to optimally choose its phase-space
representative point. This problem has been so far
addressed using various approximate procedures [18–22]
and is considered here in light of the quantitative criterion
of an error reduction. As shown in the Supplemental
Material [9], assuming jδ _Ψi ≈ _csjzsi, the optimal zs is
the one with the largest overlap with HjΨi. We apply this
criterion to a tunneling problem, i.e., a particle of mass
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FIG. 2. Adaptive propagation with control of the LITE. Results for a one-dimensional tunneling dynamics described by a
superposition of a variable number of frozen Gaussians (coherent states), starting from a single CS moving toward the barrier (see the
text for details). (a) The squared LITE (a.u.) for different values of the threshold δ used for state spawning and (b) the corresponding
evolution of the number N of basis states used in the simulations. (a),(b) are representative results obtained for p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2mV0

p
, where

V0 ¼ 1 a.u. is the barrier height. (c) Total tunneling probability as a function of δ, for different energies E0 ¼ p2
0=2m as indicated.

Horizontal lines are exact results.
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1 a.u. scattering off a symmetric Eckart barrier VðqÞ ¼
V0sech2ðq=LÞ of height V0 ¼ 1 a.u. and width L ¼ 4 a.u.
The system is initially described by a single CS jz0i of
width Δq ¼ 1 a.u. localized in the asymptotic region, with
a momentum p0 ¼ ℏ=ΔqIm z0 directed toward the barrier.
In the semiclassical approximation, i.e., using a single state
for the whole dynamics, the LITE starts from the value it
takes in the potential-free region (ε2 ¼ ℏ2=32m2Δq4) and
goes through a maximum when the wave packet hits the
barrier [top curve in Fig. 2(a)]. The wave packet is either
totally transmitted or totally reflected, depending on its
energy, and thus fails to describe the correct dynamics.
Error control is then employed to increase the number of
expansion states during the time evolution, by spawning as
soon as the LITE ε exceeds a threshold δ. When using the
optimal spawning criterion according to Eqs. (11) and (12),
a drastic reduction of the error is seen at each time when
new states are introduced [Fig. 2(a)], and the results (the
total tunneling probability) rapidly converge toward the
exact values when lowering δ [Fig. 2(c)]. The number of
CSs varies markedly during the dynamics and reaches its
maximum [here, 10–15 for the examples in Fig. 2(b)] when
the wave packet lies in the critical barrier region [23].
Finally, we sketch the application of optimal spawning to

a more flexible variational method for high-dimensional
systems, the multiconfiguration time-dependent Hartree
(MCTDH) method [24–27] (see also Ref. [28] for related
ideas on interacting bosons). In the MCTDH method, the
wave function takes the form jΨ0i ¼

P
I CIjΦIi, where the

CI’s are complex coefficients, I ¼ ði1; i2;…; iNÞ is a multi-
index, and jΦIi ¼ jϕi1ϕi2…ϕiN i (where iκ ¼ 1;…; nK) are
configurations of fully flexible SPFs. The task here is to
change on the fly the number of SPFs [29], which means
varying both the size of the secular problem for the
amplitude coefficients and the number of SPFs to be
optimized. Besides optimizing the computational cost at
run time, this would solve from the outset the long-standing
problem of regularizing solutions that contain configura-
tions with vanishing weight [30–32]. As shown in the
Supplemental Material [9], the application of Eq. (12)
provides the “best” SPF jηi to add to the κth degree of
freedom, when the main correction comes from single
excitations of the “occupied” configurations jΦIi. jηi is the
SPF that maximizes the expectation value of a certain
reduced, self-adjoint “rate” operator ΓðκÞ for the κth mode,
among those SPFs that lie in the orthogonal complement of
both the κth mode occupied states (jϕiκi, iκ ¼ 1; nκ) and
their time derivatives (see Supplemental Material [9]). The
reduced operator reads as

ΓðκÞ ¼
X
IðκÞ

hΦIðκÞjHjΨ0ihΨ0jHjΦIðκÞi

(where ΦIðκÞ is a κth hole configuration and the scalar
products are taken over all modes except the κth), and the

ensuing reduction of the local-in-time (squared) error is
hηjΓðκÞjηi=ℏ2 (see Supplemental Material [9] for details).
The prescription works for both standard MCTDH and its
fermionic and bosonic extensions.
Conclusions.—Variational solutions of the time-

dependent Schrödinger equation have an intrinsic measure
of their reliability, a LITE that measures the departure from
the instantaneous exact solution. Simple expressions have
been provided for this error in physically relevant cases,
with the aim of showing how the error helps to assess
quantitatively the reliability of the variational method for a
given dynamical problem. Furthermore, an adaptive propa-
gation scheme, relying on “natural” spawning according to
the LITE, has been demonstrated for a superposition
of coherent states. Despite the simplicity of the one-
dimensional example presented here, the adaptive propa-
gation procedure can be immediately transposed to CS
propagation in many dimensions, using a hierarchical
tensor representation [33,34]. Such adaptive schemes are
crucial for on-the-fly variational quantum dynamics and
optimize the computational cost for a target accuracy.
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