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Magnon-phonon hybrid excitations are studied theoretically in a two-dimensional antiferromagnet with
an easy axis normal to the plane. We show that two magnon bands and one phonon band are intertwined by
the magnetoelastic coupling through a nontrivial SU(3) topology, which can be intuitively perceived by
identifying a skyrmion structure in the momentum space. Our results are insensitive to lattice details and
generally applicable to two-dimensional antiferromagnets. We show this by developing a continuum theory
as the long-wavelength approximation to the tight-binding model. The theoretical results can be probed
by measuring the thermal Hall conductance as a function of the temperature and the magnetic field. We
envision that the magnetoelastic coupling in antiferromagnets can be a promising venue in search of various
topological excitations, which cannot be found in magnetic or elastic models alone.
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Antiferromagnets have recently emerged as promising
material platforms in spintronics [1–3]. Due to the absence
of the stray field and the intrinsic timescale at THz,
antiferromagnet-based devices can be packed denser and
operate at higher speeds than conventional ferromagnet-
based GHz devices, which interact with each other via
a stray field. In particular, antiferromagnets are expected
to provide efficient spin-transport channels between spin-
tronics devices, as observed in the antiferromagnetic
insulator chromia [4] and haematite [5].
Parallel to the emergence of antiferromagnetic spintronics,

there has been significant effort in identifying novel topo-
logical excitations in magnets, driven by both fundamental
interest and their practical use as robust transport channels.
Topological magnons have been identified in several types of
magnets, see Refs. [6–17] for examples. Going beyond
previous work on topological magnons, hybrid excitations of
magnons and phonons are also shown to be topological in
certain magnets, in presence of the Dzyaloshinskii-Moriya
interaction (DMI) [18], the dipolar coupling [19], or the
exchange magnetorestriction [20]. Some of us have
recently shown [21] that a topologically nontrivial mag-
non-phonon hybridization can be induced in a square-lattice
ferromagnet—even in the absence of inversion-symmetry-
breaking DMI or long-range dipolar coupling—by a mag-
netoelastic coupling, which is expected to generally exist in
magnets with crystalline anisotropy [22].
In this Letter, we address the topological effect of the

magnetoelastic coupling [23] in a square-lattice antiferro-
magnet, where a minimal model to describe magnon-
phonon hybrid excitations requires three quasiparticles.

Different from the SU(2) topology of the ferromagnetic
case with two bands [21], they possess an enriched
topological structure of the SU(3) algebra. Aside from
directly calculating Chern numbers of excitations bands
using the SU(3) formalism, we show that, an intuitive
understanding of the band topology can be obtained by
identifying a skyrmion structure, where skyrmion numbers
are defined through the more familiar SU(2) formalism
[24]. The nontrivial topology gives rise to the thermal Hall
effect, where the direction of the transverse heat flow can
be controlled, as the thermal Hall conductance changes
sign upon reversal of the out-of-plane magnetic field, see
Fig. 1(a). There has been growing interest in a family of
two-dimensional antiferromagnets MPS3 (M ¼ Mn, Fe,
Ni) [25,26], where we propose the thermal Hall effect to be

(a) (b)

FIG. 1. (a) Magnon-phonon hybrid excitations in a square-
lattice antiferromagnet. The system exhibits the thermal Hall
effect and the spin Nernst effect, which refer to the generation of a
heat current jqy (under magnetic field H) and a spin current jsy
transverse to the applied temperature gradient∇xT. (b) The lattice
Brillouin zone (dashed black square) and the magnetic Brillouin
zone (red square), where a is the lattice constant.
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observed due to the magnetoelastic coupling discussed in
this work. For experimental comparison, we give a pre-
diction for the dependence of the thermal Hall conductance
on the temperature and the magnetic field. Furthermore, by
developing a continuum field theory for the magnetic and
elastic degrees of freedom, we show that our results are
generally applicable to two-dimensional antiferromagnets.
We envision antiferromagnets serving as versatile platforms
to realize various multiband topological insulators, where
magnon-phonon excitations can be used for robust infor-
mation transport in spintronics. The broader implications of
our work are discussed at the end of the Letter.
Model.—We study harmonic excitations of the

Hamiltonian

H ¼ Hm þHe þHme ð1Þ

on a square lattice, which describes two subsystems—
magnetic and elastic—and the interaction between them.
The magnetic interactions include the nearest-neighbor

antiferromagnetic Heisenberg exchange, the easy-axis
anisotropy, and the Zeeman coupling to an external
magnetic field H ¼ Hẑ:

Hm ¼ J
X
hll0i

Sl · Sl0 −
K
2

X
l

Sz2l − h
X
l

Szl; ð2Þ

where hll0i runs over all pairs of nearest neighbors,
J; K > 0 are respectively the exchange constant and the
anisotropy coefficient, and the Zeeman coupling is h ¼
μBgH with the Bohr magneton μB and the Landé g factor, g.
One of the two time-reversal-related Néel ground states has
the spin configuration Si∈A ¼ Sẑ and Sj∈B ¼ −Sẑ, as
shown in Fig. 1(a). We study magnon excitations by the
Holstein-Primakoff approach [27],

Hm ¼
X
k

ðϵmþ
k α†kαk þ ϵm−

k β†kβkÞ þ const:; ð3Þ

where the wave vector k is summed over the first
magnetic Brillouin zone shown in Fig. 1(b). There are
two magnon bands with dispersion relations ϵm�

k ¼
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzJ þ KÞ2 − ðJγkÞ2

p
� h, where z ¼ 4 is the coordinate

number and γk ¼ 2½cosðkxaÞ þ cosðkyaÞ�. The bosonic

operator α†k (β†k) creates a magnon with Sz ¼ −1 (þ1),
which is a good quantum number because of the rotational
symmetry of the Hamiltonian (2). We assume h≲ S

ffiffiffiffiffiffiffiffiffi
8JK

p
so that magnons have finite gaps.
For the Hamiltonian describing the lattice dynamics, we

consider the out-of-plane component uzl of the displace-
ment vector ul, which is the only component that later
enters the magnon-phonon coupling:

He ¼
1

2M

X
l

ðpz
lÞ2 þ

λ

2

X
hll0i

ðuzl − uzl0 Þ2; ð4Þ

where M is the atom mass, pz
l ¼ M _uzl is the conjugate

momentum, and λ is the spring constant between nearest
neighbors. The quantization of phonon excitations yields

He ¼
X
k

ðϵp−k η†kηk þ ϵpþk ζ†kζkÞ þ const:; ð5Þ

where phonon dispersion relations are ϵp�k ¼ ℏω0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z� γk

p
with characteristic frequency ω0 ¼

ffiffiffiffiffiffiffiffiffi
λ=M

p
. In the reduced

(magnetic) Brillouin zone, we obtain two phonon modes,
the acoustic branch ηk and the optical branch ζk.
Our study focuses on the interaction between the spin

and the elastic strain, which will be shown later to induce
nontrivial topology to the excitation bands. As was pointed
out by Kittel [23],

Hme ¼ κ
X
l∈A;B

X
δ

SzlðSl · êδÞðuzl − uzlþδÞ; ð6Þ

where κ is the magnetoelastic coupling constant and êδ is a
unit vector pointing along the bond connecting nearest
neighbors. For our magnetic ground state, this term (6) is
the leading order approximation to the magnetoelastic
energy.
When κ ¼ 0, the acoustic phonon intersects magnon

bands at rings of wave vectors as shown in Figs. 2(a)–2(c).
We treat the magnetoelastic coupling as a perturbation, the
most prominent effect of which is to lift the degeneracy
at band crossings. Therefore, the magnetoelastic
Hamiltonian (6) expressed in magnon and phonon oper-
ators is dominated by terms conserving the total number of
quasiparticles,

Hme ≈ κ
X
k

X
b¼þ;−

fvbkχbk½i sinðkxaÞðα†k þ bβ†kÞ

− sinðkyaÞðα†k − bβ†kÞ� þ H:c:g; ð7Þ

where χþk ¼ ζk, χ−k ¼ ηk, v�k ¼ ℏS3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Mϵp�k

q
×

ðsinhϑk � coshϑkÞ with tanh 2ϑk ¼ −Jγk=ðzJ þ KÞ.
The full Hamiltonian (1) thus becomes a tight-binding

model for magnon-phonon hybrid excitations. By exact
diagonalization, we find that the magnetoelastic coupling
gives rise to the so-called avoided crossing features in
excitation bands, as shown in Figs. 2(d)–2(f). The degree of
hybridization is reflected by the spin number SznðkÞ ¼
hϕnðkÞjðβ†kβk − α†kαkÞjϕnðkÞi, where ϕnðkÞ is the wave
function of the band with the eigenenergy EnðkÞ.
SU(3) topology.—To study the band topology, it is

adequate to consider the three-band Hamiltonian [28]
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H3 ¼
P

k ψ
†
kHkψk, with the operator ψk ¼ ðαk; βk; ηkÞT

and the hopping matrix

Hk ¼

0
BB@

ϵmþ
k 0 Ck

0 ϵm−
k C�

k

C�
k Ck ϵp−k

1
CCA; ð8Þ

with the magnon-phonon coupling Ck ¼ κv−k½i sinðkxaÞ−
sinðkyaÞ�. The three-band tight-binding model is naturally
described by the algebra of the SU(3) group. By making a
similarity transformation and eliminating the trace, the Bloch
Hamiltonian (8) becomes

H̃k ¼ hλ2 þ
ffiffiffi
2

p
κv−k½sinðkxaÞλ5 − sinðkyaÞλ7�

þ 1

2
ffiffiffi
3

p ðϵmþ
k þ ϵm−

k − 2ϵp−k Þλ8; ð9Þ

where λs are Gell-Mann matrices [29] for SU(3) group akin
to Pauli matrices for SU(2) group.
Following the method developed by Barnett et al. [30],

we compute the Berry curvature Ωz
nðkÞ and the Chern

number Cn associated with each band directly from the
Bloch Hamiltonian (9). For h > 0, we find the Chern
numbers to be ðþ1;−2;þ1Þ, see Figs. 3(a)–3(c). All Chern
numbers flip their signs when the magnetic field is in the
opposite direction, see Figs. 3(h)–3(j) for h < 0. As shown
in Figs. 3(k)–3(m), a topological phase transition happens
at h ¼ 0, when the band gaps close at both Γ point and the
boundary of the Brillouin zone.

We notice that ðλ2; λ5; λ7Þ forms the spin-1 representation
of angular momentum operators. Three-band hopping
models enjoying such a SU(2) subalgebra have been well
understood [31–33], where Chern numbers are ð−c; 0; cÞ
with c ∈ Z. The presence of λ8 enriches the band topology
of our model. Similar cases have been previously studies in
cold atom systems [30,34], where formalism with more
mathematical rigor is discussed.
Here, we achieve an understanding of the band topology

more intuitively, with the help of the skyrmion structure in
the familiar two-band theories. For κa ≪ h, nonzero Berry
curvatures concentrate in the vicinity of avoided crossings,
while the two rings of momenta satisfying ϵm�

k ¼ ϵp−k are
relatively separated from each other.
Let us take the example of h > 0. For wave vectors near

the band crossing ϵm−
k ¼ ϵp−k , the prominent topological

effect should occur between the two crossing bands, which
motivates us to write the Bloch Hamiltonian (8) in the
following form:

Hk ¼
�
ϵmþ
k 0

0 1
2
ðϵm−

k þ ϵp−k ÞI2 þ dðkÞ · σ

�
þ Vk; ð10Þ

where σ ¼ ðσx; σy; σzÞ are Pauli matrices, dðkÞ ¼
½−κv−k sinðkyaÞ; κv−k sinðkxaÞ; ðϵm−

k − ϵp−k Þ=2�. Here, Vk is
a perturbation term that does not participate in opening the
gap between the two bands (ϵm−

k and ϵp−k ) and thus can be
neglected for now. A skyrmion with topological charge
Q ¼ þ1 [see Fig. 3(e)] emerges in the unit vector field
d̂ðkÞ ¼ dðkÞ=jdðkÞj, where

Q ¼ 1

4π

Z
dkx

Z
dkyd̂ðkÞ·

�∂d̂ðkÞ
∂kx ×

∂d̂ðkÞ
∂ky

�
: ð11Þ

According to the SU(2) model for two bands gapped by
dðkÞ, the lower (upper) band has Chern number þQ (−Q).
Similarly, around ϵmþ

k ¼ ϵp−k , the Berry curvature is deter-
mined by an anti-skyrmion with Q ¼ −1 [see Fig. 3(d)].
Together, the skyrmion and antiskyrmion structure gives a
Chern number distribution ðþ1;−2;þ1Þ. For h < 0, the
only difference lies at ϵm−

k > ϵmþ
k . The Chern numbers

are thus reversed, with the skyrmion structure shown in
Figs. 3(f), 3(g). The consideration of the skyrmion structure
is consistent with the homotopy theory for an SU(3) matrix
with a fixed set of eigenvalues [35,36]: π2fSUð3Þ=½Uð1Þ×
Uð1Þ�g ≃ π1½Uð1Þ� × π1½Uð1Þ� ¼ Z × Z.
Experimental applications.—The nontrivial band top-

ology gives rise to thermal Hall effect, which can be
observed in experiments. A current of magnon-phonon
excitations drifting under a temperature gradient acquires a
transverse component in presence of the fictitious magnetic
field Ωz

nðkÞ. The thermal Hall conductance is given by
[37,38] κT ¼ −ðk2BT=ℏÞ

P
n

R
d2kΩz

nðkÞc2½ρnðkÞ�, where

FIG. 2. Dispersion relations of excitation bands. (a)–(c) In the
absence of the magnetoelastic coupling. The green and the red
lines depict the Sz ¼ 1 magnons and the Sz ¼ −1 magnons,
respectively. The yellow lines depict phonons. (d)–(f) Hybridi-
zation of magnons and the acoustic phonon in the presence of
the magnetoelastic coupling κ ¼ 0.8 meV=Å. The color repre-
sents the value of Szn of the nth band at each momentum.
Parameters used are these: S ¼ 5=2, J ¼ h ¼ 0.5 meV,
K ¼ 0.1 meV, and ℏω0 ¼ 7.5 meV.
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c2ðρÞ¼ð1þρÞ ln2½ð1þρÞ=ρ�− ln2ρ−2Li2ð−ρÞ, ρnðkÞ ¼
1=½expðEnðkÞ=kBTÞ − 1� is the Bose-Einstein distribution
function, and Li2ðzÞ is the polylogarithm function.
We estimated a set of parameters for MnPS3 to plot the

temperature T and magnetic field H dependence of the
thermal Hall conductance in Fig. 4. A Mn ion has mass
M ¼ 55 u and spin S ¼ 5=2. The lattice constant is
a ¼ 6.1 Å. We set ℏω0 ¼ 7.5 meV, resulting in a phonon
velocity ∼5 km=s; magnetic parameters [39,40] zJ ¼
4 meV and K¼0.01meV, yielding a small magnon gap
∼0.7 meV; the Landé g factor g ¼ −2.0; and the magne-
toelastic coupling κ ¼ 0.2 meV=Å, giving 2κS2=a2∼
11 J=cm3, in the same order of magnitude with Kittel’s

estimation [22]. The resulting thermal Hall conductance
has a magnitude comparable to the observed values in
Ref. [41], thus is within the current experiment reach.
The antisymmetric feature of κT under the magnetic field

can be of practical interest in designing spincaloritronic
devices with reversal thermal current. Since the magne-
toelastic coupling explicitly couples the spin orientation
and the lattice wave vector [see Eq. (12) in the continuum
theory], the spin Nernst effect [42,43] is also expected to be
observable. According to the bulk-edge correspondence
[44,45], there are two edge modes carrying a net spin
current.
Applicability to general 2D antiferromagnets.—The

nontrivial SU(3) band topology in magnon-phonon hybrid
excitations is not limited to a square-lattice system. We
expect it to be a rather general phenomenon in two-
dimensional antiferromagnets. This is demonstrated by
developing a continuum theory, which is equivalent to
the tight-binding model in the low-energy and long-
wavelength limit (with κa ≪ S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2J3=K

p
≪ ℏω0).

We study the dynamics of two slowly varying fields—
the unit-vector staggered spin nðr; tÞ ¼ ðSA − SBÞ=2S ¼
ẑþ δnðr; tÞ [46], and the lattice displacement uzðr; tÞ.
They are coupled through the energy density

Hme ¼ −
2κS2

a
n · ∇uz: ð12Þ

FIG. 3. Topological properties of magnon-phonon hybrid excitations. Berry curvatures Ωz
n of excitation bands for h > 0 (a)–(c) and

h < 0 (h)–(j) are plotted in log scale [21] LðΩz
nÞ ¼ signðΩz

nÞ logð1þ jΩz
njÞ. The corresponding skyrmion structures are shown for h > 0

(d), (e) and h < 0 (f), (g), where black arrows are in-plane components of dðkÞ. Same parameters are used as in Fig. 2. A topological
phase transition (k)–(m) occurs at h ¼ 0 when band gaps close. See the main text for detailed discussions.

(a) (b)

FIG. 4. The magnetic field dependence (a) and temperature
dependence (b) of the thermal Hall conductance κT . The dashed
lines are extrapolations from calculation. Parameters and esti-
mated for MnPS3, see main text.
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Dispersion relations of the magnon-phonon hybrid excita-
tions are revealed by their coupled equations of motion,
which can be derived from the action

S½Ψ� ≈ 1

2

Z
d2k

Z
dωΨ†

k;ωðE − Gk;ωÞΨk;ω; ð13Þ

where the operatorΨk;ω is the Fourier transform of the field
operator ½ψþðr;tÞ;ψ−ðr;tÞ;uzðr;tÞ�T with ψ�¼δnx� iδny;
and

Gk;ω ¼

0
BB@

Em þ h 0 C̃k

0 Em − h C̃�
k

C̃�
k C̃k Ep

1
CCA ð14Þ

with Em ¼ S
ffiffiffiffiffiffiffiffiffi
8JK

p þ S
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2J3=K

p
a2ðk2x þ k2yÞ, Ep ¼

ℏω0a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, and C̃ ¼ −κS3=2ð8J=KÞ1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aℏ=2Mω0

p
×

ðk2x þ k2yÞ−1=4ðikx − kyÞ. These are exactly the lowest order
approximations to elements in the Block Hamiltonian (8),
and thus the continuum theory (13) possesses the same
band topology with that of square-lattice system: Our
results on the nontrivial SU(3) topology of magnon-phonon
hybrid excitations and the resultant thermal Hall conduc-
tivity are expected to exist generally in two-dimensional
antiferromagents regardless of their lattice structures.
Discussion.—We remark on the applicability of our

theoretical model more generally. First, we study a classical
spin system with an antiferromagnetic order. At a temper-
ature is much lower than the Néel temperature, magnetic
excitations are magnons with well-defined dispersions.
Second, we have focused on the hybridization between
two magnon bands and the acoustic phonon, which is a
minimal model for an antiferromagnet. The effect of the
magnetoelastic coupling can, of course, be generally
considered for more complicated band structures, such
as phonons from other displacement components and
magnons in noncollinear antiferromagnet. Third, the rota-
tional symmetry around the easy axis is approximate in the
low energy limit in a lattice system.
Several features of the magnetoelastic coupling (6) are

worth noting in our study. It is linear in magnon operators,
as manifested in Eq. (7), thus has a leading order con-
tribution to the excitation spectrum. In the continuum
form (12), it has the familiar form of a spin-orbit coupling.
Without the requirement of breaking the inversion sym-
metry, it is expected to exist generally in magnetic systems.
In contrast to the widely studied Dzyaloshinskii-Moriya
interaction [47,48], the effect of the magnetoelastic cou-
pling (6) is largely unknown. By revealing the nontrivial
topology it can induce to magnon-phonon hybrid excita-
tions, we hope to bring more attention to its effects.
The magnetoelastic coupling can serve as a venue in

search of various topological excitations, as well as other

novel phenomena in the interplay between magnetic and
elastic degrees of freedom. For example, nonreciprocal
phonons in a magnetic ordered state (as recently observed
in Ref. [49]) can be a more generally existing effect [23];
and vice versa, the possibility to use strain to tune magnetic
states or mangon properties can be considered [25].
An interesting subject for future study is the effect from

the intrinsic quantum mechanical nature of antiferromag-
netic magnons, which can be prominent when the spin
length is small. Another is the magnon-phonon hybridiza-
tion engendered by the exchange-type magnetoelastic
coupling as in Ref. [20], which could be strong especially
in materials exhibit the Jahn-Teller effect [50]. It has been
shown that magnon-photon coupling can result similar
band repelling effect [51,52]. Our ideology might also be of
interest for topological photonics [53] in magnetic systems.
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