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Ferromagnetic quantum criticality in clean metals has proven elusive due to fermionic soft modes that
drive the transition first order. We show that noncentrosymmetric metals with a strong spin-orbit interaction
provide a promising class of materials for realizing a ferromagnetic quantum critical point in clean systems.
The spin-orbit interaction renders massive the soft modes that interfere with quantum criticality in most
materials, while the absence of spatial inversion symmetry precludes the existence of new classes of soft
modes that could have the same effect.
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Ferromagnetism in metals has provided one of the
earliest examples of a quantum phase transition. Stoner
[1] developed an eponymous mean-field theory that
describes both the classical and the quantum ferromagnetic
(FM) transition. Hertz [2] later argued that, in the quantum
case (i.e., for the transition at zero temperature driven by a
nonthermal control parameter), Stoner theory is exact, as
far as the critical behavior is concerned, for all spatial
dimensions d > 1. The reason is that the coupling between
the statics and the dynamics at zero temperature (T ¼ 0)
lowers the upper critical dimension, above which the
fluctuations neglected by mean-field theory are irrelevant,
from dþc ¼ 4 in the classical case to dþc ¼ 1 in the quantum
case. Hertz’s renormalization-group treatment, as refined
by Millis [3], agreed with results obtained by different
methods by Moriya [4]. Collectively, this became known as
the Hertz-Millis-Moriya (HMM) theory of FM quantum
criticality.
These theoretical predictions were not borne out exper-

imentally. In stoichiometric systems with minimal amounts
of quenched disorder, and the quantum phase transition
(QPT) driven by pressure, the transition almost invariably
becomes first order if the Curie temperature is sufficiently
low, and this is true for local-moment ferromagnets as well
as itinerant ones [5]. Notable exceptions are CeRh6Ge4
[6,7] and UIr [8], which we will come back to. The reason
for this failure of HMM theory is by now well known: A
generic Fermi liquid with a negligible spin-orbit interaction
(more on this later) contains soft or massless two-particle
excitations that couple to, and are rendered massive by, an
external magnetic field or a magnetization [9,10]. This
coupling results in the free energy being a nonanalytic
function of the magnetization, which in turn drives the FM
QPT first order [11]. This mechanism is operative for local-
moment ferromagnets as well as for itinerant ones, and also
for canted ferromagnets and for ferrimagnets [12] as well as

for magnetic nematics [13]; for a review, see Ref. [5]. It has
recently been shown that it also is operative in Dirac metals,
i.e., systems where a linear band crossing is caused by a
strong spin-orbit coupling [14–16], if for unobvious rea-
sons. A nonzero temperature gives the soft modes a mass
and thus cuts off the first-order mechanism; this leads to a
tricritical point in the phase diagram [11]. Similarly, an
external magnetic field gives the soft modes a mass, which
results in tricritical wings that emerge from the tricritical
point in the temperature-pressure-field parameter space and
end in quantum critical points (QCPs) at a nonzero
field [17].
One way to avoid these conclusions and realize a FM

QCP in zero field is to introduce quenched disorder, which
has been predicted [11,18] and observed [19] to restore a
QCP. However, the resulting critical behavior is not
described by HMM theory but is substantially more
complicated [20–22]. Experimental results are consistent
with these predictions [23,24]. Another possibility is one-
dimensional or quasi-one-dimensional materials; see
Ref. [25] for a model of FM quantum criticality in such
systems.
It would be very interesting if clean materials could be

found in which the mechanism for a first-order transition is
inoperative, so that a FM QCP in zero field can be realized
in three-dimensional systems. In this Letter, we show that a
promising class of materials involves systems with a strong
spin-orbit coupling that are not centrosymmetric. Our
central result is an equation of state that takes the form

h ¼ rm − vm3 ln

�
1

m2 þ ν2 þ t2

�
þ um3: ð1Þ

Herem, ν, and h are the dimensionless magnetization, spin-
orbit coupling, and magnetic field, respectively, in atomic
units. They are formally defined as follows. Let μ be the
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magnetization measured in units of μB per volume and Eex
the exchange splitting due to that magnetization, let H be
the external magnetic field, let Eso be the splitting of the
conduction band near the Fermi energy induced by the
spin-orbit coupling, let ne be the conduction-electron den-
sity, and let TF be the Fermi temperature. Then h ¼
μBH=kBTF, m ¼ μ=ne ≈ Eex=kBTF, and ν ¼ Eso=kBTF.
t ¼ T=T0 is the dimensionless temperature, with T0 being
a temperature scale that depends on microscopic details
such as the band structure and the correlation strength. r is
the control parameter, and u > 0 and v > 0 are Landau
parameters. u is generically of order unity. v is a measure of
the strength of correlations in the system; for very strong
correlations, v ≲ 0.1.
We first discuss Eq. (1) in the context of the general FM

QPT problem and give plausibility arguments for its
functional form, then we discuss its implications, and
finally we sketch its derivation.
To make Eq. (1) plausible, consider the case of a

vanishing spin-orbit coupling, ν ¼ 0. Then we recover
an equation of state that has been discussed before [5,11].
The nonanalytic dependence of the free energy, and hence
the equation of state, on the order parameter m at T ¼ 0 is
the result of ballistic soft modes that have been integrated
out in order to express the free energy entirely in terms of
the order parameter. The nonanalytic term dominates the
quartic term in the free energy (or the cubic term in the
equation of state), and its sign is negative, which leads to a
first-order transition at r ¼ r1 ¼ ve−ð1þu=vÞ, where the
magnetization changes discontinuously from zero to m1 ¼
e−ð1þu=vÞ=2 [11]. A nonvanishing temperature gives the soft
modes a mass, so T > 0 cuts off the singularity. As a result,
there is a tricritical point at a temperature T tc ¼ T0e−u=2v

[11]. In a magnetic field, tricritical wings emerge from the
tricritical point that end in wing tips at T ¼ 0 and h ¼
hc ¼ ð4=3Þve−3u=2v−13=4 [17].
A spin-orbit interaction splits the conduction band and

gives the soft modes a mass. However, in centrosymmetric
systems a chiral degree of freedom leads to new soft modes
that have the same effect as the original ones. Such metals
were called Dirac metals in Refs. [14–16] in order to
distinguish them from the ordinary, or Landau, metals with
a negligible spin-orbit interaction. The net result is an
equation of state that is again given by Eq. (1) with ν ¼ 0.
This changes if spatial inversion symmetry is broken. The
spin-orbit interaction still gives the soft modes a mass, but
there is no chiral degree of freedom that leads to a new class
of soft modes. One then obtains Eq. (1); the resulting phase
diagram is shown in Fig. 1.
We now give a semiquantitative discussion of Eq. (1),

with the goal of identifying promising candidate materials
that might realize a FM QCP in clean systems. The critical
value νc of the dimensionless spin-orbit energy, above
which the first-order transition is suppressed, is obviously
the same as the dimensionless tricritical temperature t0tc for

ν ¼ 0: νc ¼ e−u=2v. The tricritical temperature T0
tc for

centrosymmetric materials, where ν is absent in the
equation of state, is typically on the order of 10 K [5],
albeit with a large spread that ranges from 1 K in URhGe to
over 100 K in CoS2. For the critical spin-orbit energy, we
thus have Ec

so ¼ kBT0νc ¼ ðTF=T0ÞkBT0
tc. The temperature

scale T0 was estimated in Ref. [18], which concluded that
TF=T0 is typically on the order of 1000 (as low as 750 in
ZrZn2 and as high as 3500 in UGe2). This implies that
typically Ec

so ≈ 1 eV, with a spread of a factor of up to 10 in
either direction. If we assume TF ≈ 105 K for a good metal,
this implies Ec

so=kBTF ≈ 0.1. It is illustrative to compare
this with values of m1 for ν ¼ 0, which typically fall into
the range m1 ≈ 0.05–0.25 [5,18].
Considering the two entries in Table I with a first-order

QPT for which Eso is known, MnSi and URhAl, it is
plausible that Eso is not large enough to suppress the first-
order mechanism. For the two entries with a QCP, UIr and
CeRh6Ge4, the spin-orbit splitting Eso is not known. For a
list of Eso values in noncentrosymmetric materials that are
not ferromagnetic, see Ref. [26]; they range from 0.004 to
0.2 eV. For interpreting these values, it is important to keep
in mind that Eso should be compared to the Fermi energy.
For instance, in BiTeBr, Eso ≈ kBTF [27]. Eso ≈ 0.2 eV has
been reported for CePt3Si [28], which also is not ferro-
magnetic. If the spin-orbit coupling in CeRh6Ge4 were of
similar strength, then it would be in the lower range of
values that can plausibly be expected to be responsible for
the observed QCP. In UIr, one would expect an even higher
value, which may well be the reason for the observed QCP.

FIG. 1. Phase diagram in the space spanned by t, r, and ν based
on Eq. (1). Shown are a flat surface of second-order transitions at
r ¼ 0 (solid blue area), a curved surface of first-order transitions
(meshed green area), and a line of tricritical points delineating the
two (red curve). In a given material, ν will be fixed. For a given ν,
r will be a complicated function of pressure and temperature.
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Of the third group of materials listed in Table I, the first
three are potential candidates for a pressure-induced QCP,
but the values of Eso are not known. More generally, we
conclude that promising candidates for a FM QCP are
noncentrosymmetric materials with a large (≈1 eV or
larger) spin-orbit splitting Eso of the conduction band near
the Fermi energy.
We now sketch the derivation of Eq. (1); see the

Supplemental Material [39] for more details. In the
absence of spatial inversion symmetry, a single-particle
Hamiltonian that captures the dominant effects of the spin-
orbit interaction can be written [40]

H0 ¼ ξkσ0 þ vsoσ ·ΩðkÞ − h · σ: ð2Þ

Here ξk ¼ ϵk − μ, where ϵk is the single-particle energy-
momentum relation and μ the chemical potential, h is an
external magnetic field, σ ¼ ðσ1; σ2; σ3Þ denotes the Pauli
matrices with σ0 as the 2 × 2 unit matrix, and vso is a
coupling constant that represents the strength of the spin-
orbit interaction. Invariance under time reversal (which
flips the signs of both σ and k) in the absence of a magnetic
field requires Ωð−kÞ ¼ −ΩðkÞ. This implies that the spin-
orbit term is not invariant under spatial inversion (which
flips the sign of k only).
The explicit form of ΩðkÞ depends on the space group;

well-known examples are the Dresselhaus spin-orbit cou-
pling for the zinc blende structure, which is cubic in k [41],
and the Rashba-Sheka coupling for the wurtzite structure,

which is linear in k [42]. For definiteness, we will use the
same form as in Refs. [14–16]—namely,

ΩðkÞ ¼ k: ð3Þ
The coupling constant vso is then dimensionally a velocity.
The broken inversion symmetry is the crucial difference
between the current discussion and the Dirac metals
considered in Refs. [14–16]. Spatial inversion symmetry
requires the existence of an additional, chiral, pseudospin
degree of freedom that is odd under parity. The presence or
absence of this degree of freedom qualitatively changes the
soft-mode spectrum of the electron system, as we will now
discuss.
The inverse Green’s function for the Hamiltonian H0 in

Eq. (2) is G−1
k ¼ iωmσ0 −H0, with ωm being a fermionic

Matsubara frequency and k ¼ ðiωn; kÞ. In terms of quasi-
particle resonances

Fβ
k ¼ 1=ðiωn − ξk − βjvk − hjÞ ð4aÞ

and spin matrices

MβðêÞ ¼ ðσ0 þ βσ · êÞ; ð4bÞ

with ê being an arbitrary unit vector, we find that

Gk ¼
1

2

X
β¼�

Fβ
kMβ

�
vsok − h
jvsok − hj

�
: ð4cÞ

TABLE I. Noncentrosymmetric pressure-tuned quantum ferromagnets. TC, Curie temperature; T tc, tricritical temperature; Eso, spin-
orbit splitting of conduction band; ρ0, residual resistivity; three center dots, not available; empty cell, not applicable; NPT, no pressure
tuning to date; AFM, antiferromagnet. References are given only for properties not referenced in Ref. [5].

System
Space
group c

Order
of QPT d TC=K

a T tc=K Eso=eV
Disorder b

(ρ0=μΩ cm) Comments

MnSi P213 (198) First 29.5 ≈10 ≈0.3 [29] 0.33 Weak helimagnet
U3P4 I4̄3d (220) First 138 32 � � � 4
UCoAl P6̄2m (189) First 0 > 11 � � � 24
URhAl P6̄2m (189) First ≈30 ≈11 ≈1 [30] ≈65
SmNiC2 Amm2 (38) First ≈4 >17 (?) � � � 2

UIr P21 (4) Second 46-1 � � � 0.4 [31] Multiple FM phases;
second order above 0.8 K

CeRh6Ge4 P6̄m2 (187) Second � � � 1.5 QCP with non-Fermi
liquid transport behavior [6,7]

Sm2Fe12P7 P6̄ (174) � � � 6.3 [32] � � � 6 [32] NPT
CePt3B P4mm (99) � � � 6 [33] � � � � � � � � � NPT; AFM phase between 7.8 and 6 K
CePdSi3 I4mm (107) � � � 2.78 [34] � � � � � � � � � NPT; multiple magnetic phases
UPtAl P6̄2m (189) � � � 42.5 [35] ≈1 [36] � � � TC increases with pressure;

no QPT observed
CeNiC2 Amm2 (38) � � � ≈2 [37] � � � ≈10 [37] Transition to AFM under pressure
aAt ambient pressure for systems with a first-order QPT; range as a function of pressure for systems with a second-order QPT.
bFor the highest-quality samples.
cInternational short symbol (number index) [38].
dAt the lowest TC value achieved.
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For a vanishing spin-orbit interaction, the index β turns into
minus the spin-projection index, and the spin-orbit inter-
action in zero field has an effect similar to that of a field in
the absence of a spin-orbit interaction. In particular, vso ≠ 0
splits the doubly degenerate band. Now consider wave-
vector convolutions of the Green’s function,

φβ1β2ðq;iΩnÞ¼
1

V

X
k

Fβ1
k F

β2
k−q

¼
Z

dΩk

4π

2πiNFsgnðωmÞΘð−ωmðωm−ΩnÞÞ
iΩn−vFk̂ ·qþðβ2−β1ÞjvsokFk̂−hj :

ð5Þ

Here Ωn is a bosonic Matsubara frequency, q ¼ ðiΩn; qÞ,
dΩk is the angular integration measure with respect to k,
and the second line represents the leading contribution to
the integral in the limit q, Ωn, h → 0. These are the relevant
ballistic soft modes. We have derived them for noninter-
acting electrons, but interactions cannot change their nature
for reasons discussed in Refs. [14–16]. An inspection of
Eq. (5) reveals the following. Convolutions of quasiparticle
resonances F with different signs of the frequency (i.e., of
retarded and advanced degrees of freedom) are soft as q,
Ωn → 0 if β1 ¼ β2. However, a magnetic field does not cut
off this singularity. These modes therefore cannot contrib-
ute to a nonanalytic dependence of the free energy on the
magnetic field or the magnetization. For β1 ≠ β2, on the
other hand, the spin-orbit interaction gives the ballistic
modes a mass even for h ¼ 0. For vso ≠ 0, there thus are no
soft modes in a noncentrosymmetric system that can lead to
a nonanalytic free energy, and this is the source of the
parameter ν in Eq. (1) that cuts off the nonanalyticity. This
conclusion does not hinge on the particular form of the
spin-orbit interaction given in Eq. (3); any spin-orbit
interaction will split the band and give the soft modes a
mass, so the equation of state will have the same form.
This scenario for restoring a FM QCP in zero field is

qualitatively different from the case of a gapless Dirac
metal discussed in Ref. [16], where the relevant soft modes
exist but do not couple to the order parameter. The class of
candidate materials for this scenario is much smaller than
for the one discussed here since it requires a special lattice
symmetry. The current mechanism is also very different
from the effects of quenched disorder in the absence of a
spin-orbit interaction: Disorder provides a mass under the
logarithm in Eq. (1) just as ν does, but it also leads to new
soft modes that are diffusive in nature and provide an
additional nonanalytic contribution to the equation of state.
In summary, we have shown that noncentrosymmetric

systems with a large spin-orbit coupling provide a platform
for the realization of a FM QCP in clean systems in zero
field, a goal that had eluded all experimental efforts for a
long time. Two materials in which this may already have
been observed are UIr and CeRh6Ge4, but more detailed

studies of the quantum critical behavior are needed to
support this suggestion.
We conclude with a few comments about likely features

of the resulting critical theory for a noncentrosymmetric
metal with a strong spin-orbit interaction. As mentioned
after Eq. (4), the effects of vso are similar to those of a
magnetic field for vso ¼ 0. As a result, the Gaussian vertex
for the 3 component of the magnetization has two eigen-
values with the structure of Hertz theory for a ferromagnet,
with a dynamical exponent z ¼ 3, while the remaining
eigenvalue has the structure of Hertz theory for an anti-
ferromagnet, with z ¼ 2, and the latter will lead to
corrections to the leading scaling behavior that results
from the former. For instance, for the scaling of the critical
temperature with the control parameter r ¼ p − pc for a
pressure-tuned transition, one expects Tc ∝ ð−rÞτ with an
effective exponent τ that is smaller than the standard HMM
value τ ¼ 3=4. This is consistent with a recent experiment
that found τ ¼ 3=5 in CeRh6Ge4 [6], but a more detailed
investigation is needed. More generally, it is not clear
whether the QCP whose existence we have discussed, and
which Eq. (1) provides a mean-field description for, is in
the HMM universality class for some systems, or for any
systems. In particular, for Kondo lattice systems such as
CeRh6Ge4 [6,7], questions arise about the interplay
between the Kondo effect and quantum criticality. This
topic has been discussed predominantly for antiferromag-
nets [43], but various proposals have been debated for
ferromagnets as well [7,25,44]. If HMM theory is not
applicable, then the electrical resistivity in particular may
not be governed by Mathon’s T5=3 law [45] but may reflect
a different “strange metal” behavior [7]. Also, FM analogs
of the effects discussed for antiferromagnets in Ref. [46]
might affect the critical behavior. These questions, as well
as the interplay of the spin-orbit interaction with quenched
disorder, are open problems.

We thank Manuel Brando, Piers Coleman, Hisashi
Kotegawa, and Uli Zülicke for the discussions.
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