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Many strongly correlated systems, such as the cuprate superconductors, have the interesting physics of
low dimensionality and hence enhanced fluctuation effects. We perform an analysis of the t-J model in the
slave boson formulation which accounts for strong correlations, focusing on fluctuation effects that have
hitherto not received the attention they deserve. We find several interesting results including the instability
of the d-wave superconducting state to internal phase fluctuations giving way to a time reversal broken
dþ is� superconductor at low doping. This offers an explanation for some recent experimental findings in
the cuprate superconductors, including the observation of nodeless superconductivity at low doping. We
also suggest further experiments that can validate our claims. On a broader perspective, this work points to
the importance of considering fluctuation effects in other two-dimensional strongly correlated systems
opening up a plethora of possibilities.
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The rich phase diagram of the copper oxide high-Tc
superconductors has been a major source of inspiration
in condensed matter physics [1]. One of the important
theoretical offshoots has been the extensive study of
strongly correlated model systems like the t-J model
[2–4]. While this model has been successful in explaining
several features of the cuprate phase diagram [5–7], a
comprehensive understanding of the low temperature phase
in the underdoped region is still being sought [8,9]. Recent
experiments like the observation of nodeless superconduc-
tivity in the underdoped cuprates [10,11], discovery of
s-wave-like gap in the pseudogap phase [12], and clear
signatures of breaking of time reversal symmetry [13,14]
raise new challenges.
A natural question is how much of this new physics is

contained in the t-J model? The difficulty in addressing this
question is twofold: (1) strong electron correlations, and
(2) increased importance of long-wavelength fluctuations
because of low dimensionality. Numerical techniques like
the variational Monte Carlo (VMC) methods using pro-
jected mean field like wave functions [15–17] or projected
entangled pair states (PEPS) [9] do a good job of account-
ing for strong correlations, but miss out on the long-
wavelength fluctuations because of finite size limitations
[18]. The cluster dynamical mean field theory (DMFT)
[19,20] studies on the t-J model and the related Hubbard
model also have similar issues.
The slave-boson formulation of the t-J model [21,22]

has a unique advantage in this respect. At the mean field
level it agrees qualitatively with the VMC studies [16]
indicating that the effect of strong correlations are suitably
accounted for. At the same time, being analytically trac-
table, it provides the framework for a systematic study of
the effect of long-wavelength fluctuations beyond the mean

field theory. It is worth noting that previous slave-boson
studies of the t-J model have mostly focused on incorpo-
rating the effect of fluctuations of the emergent gauge fields
in the finite temperature phases, to better describe the effect
of strong correlations [23,24]. The description of the zero
temperature phase in these studies are mean-field like and
do not account for the fluctuations of the order parameter
field even qualitatively. It is this crucial piece of physics
that we investigate, leading to a set of intriguing con-
clusions that offer an understanding of the recent experi-
ments on underdoped cuprates, even while suggesting new
avenues for experiments.
With model parameters relevant for cuprate supercon-

ductors, we use a self-consistent method [25] to estimate
the effect of bond pairing order parameter fluctuations on
the mean field ground state. We find that the results of this
fluctuation-consistent calculation are surprisingly different
from those of their mean field counterparts. One of the key
differences is that the d-wave superconducting order
(d-SC) becomes unstable to antisymmetric bond pairing
phase fluctuations [26] (unrelated to any nonpairing com-
peting order) giving way to a ðdþ is�Þ-SC for hole doping
(p) ≲0.12, where s� represents an extended s-wave pairing
amplitude. While a ðdþ is�Þ-SC can naturally account for
nodeless superconductivity, it also breaks microscopic time
reversal (T ) symmetry, a prerequisite for the observation of
polar Kerr effect (PKE) [14]. Other salient features of our
theory which differ remarkably from the mean field theory
are as follows: (1) The value of hole doping on the
overdoped side at which the d-SC subsides comes down
from its mean field value of p ∼ 0.45 to around p ∼ 0.33,
which is much closer to the experimentally observed values
for cuprate superconductors. (2) On the underdoped side,
the ðdþ is�Þ-SC order has a large extended s-wave
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amplitude, but the superfluid stiffness nevertheless
approaches zero. This is consistent with the Uemura
relation [27] and also accounts for the observation of
Nernst effect [28,29] as arising from the physics of
preformed pairs. (3) Going further on the underdoped side
(p≲ 0.055), the fluctuation modes (except one) become
soft and we find no uniform superconducting order in the
d-wave, s�-wave, or ðdþ is�Þ-wave channels. We further
propose experiments which can put our claim of ðdþ is�Þ-
SC in underdoped cuprates to test.
Model.—The t-J model written in terms of the electron

creation (c†iσ) and annihilation operators (ciσ) is,

HtJ ¼ P

"
−
X
σ
i;δ

tðδÞc†iþδσciσ þ J
X
hi;ji

�
Si · Sj −

1

4
ninj

�#
P;

ð1Þ

where P is a projection operator that restricts HtJ to the
no-double-occupancy sector of the Hilbert space. Si and
ni are, respectively, the electron spin and number oper-
ators on the site i. tðδÞ is the hopping amplitude from a
site i to a neighbor at site iþ δ. In our calculations we
shall use the nearest neighbor hopping amplitude t, and,
the next nearest neighbor hopping amplitude, t0 ¼ −0.3t.
We shall also set the nearest neighbor exchange inter-
action energy, J, to 0.3t.
Fluctuation-consistent saddle point.—Within the U(1)

slave-boson formulation of the t-J model one can obtain
the grand partition function of the system as a coherent state
path integral over the holon (slave-boson) and the spinon
(slave-fermion) field configurations with the constraint that
there is exactly one slave particle per site. It is well known that
this formulation of the t-J model introduces a (local) gauge
redundancy [5]. However, at zero Kelvin and finite values of
hole doping, the holons are condensed to realize a deconfined
Higgs phase of the internal gauge fields wherein the local
constraint becomes irrelevant [30,31], and one can rewrite the
grandpartition function as a path integral over gauge invariant
degrees of freedom [24,32–34] comprising a set of gapped
fields and an electronlike fermionic field with only a global
chemical potential. For the analysis of the low temperature
phase one can drop the gapped degrees of freedom, and
introduce Hubbard-Stratonovich fields in the particle-particle
and particle-hole channels to deal with the quartic terms in the
fermion field.A straightforward integrationover the quadratic
fermion field gives the grand partition function as a path
integral of only the Hubbard-Stratonovich fields.
The possibility of superconductivity in the t-J model can

now be analyzed by studying the saddle point configura-
tions of the Hubbard-Stratonovich fields along with the
number equation

Nð1 − pÞ ¼ −
∂Φ
∂μ ; ð2Þ

where N is the number of sites in the square lattice with
periodic boundary conditions, p is the hole doping above
half-filling, Φ is the grand canonical free energy and μ is
the chemical potential. Typically, one replaces Φ in Eq. (2)
by its saddle point estimate (ΦSP) ignoring the contribution
from the fluctuations about the saddle point. A more
accurate and yet tractable way, which we employ in this
work, is to include the effect of Gaussian fluctuations of the
Hubbard-Stratonovich fields [25] (about their saddle point
values). Furthermore, at zero Kelvin the fluctuations in the
particle-hole channel get gapped out because of the
Anderson-Higgs mechanism operative on the holon con-
densate and the internal gauge fields [24]. And thus, in the
overdoped and moderately underdoped regions of the phase
diagram where the phase of the holon condensate is
sufficiently stiff, fluctuations in the pairing order parameter
are arguably the most relevant ones in the Gaussian
fluctuation corrected grand free energy, which we denote
as ΦGF [34].
Results.—The results obtained by solving self consis-

tently the saddle point equations along with the number
equation Eq. (2), with Φ replaced by ΦGF are plotted in
Fig. 1 as a function of the hole doping p. All the quantities
shown are in units of the nearest neighbor hopping
amplitude t. The dashed line in the plots shows the usual
saddle point results, i.e., when Φ in Eq. (2) is replaced by
ΦSP, while the points show the results for the fluctuation-
consistent saddle point. Figure 1(a) shows the pairing
amplitude and its different components. Δ∘d is the d-wave
pairing amplitude when the fluctuation effects are not
included, i.e., the usual slave-boson mean field result.
Δd and Δs, indicated respectively by purple crosses and
black squares, are the d-wave and extended s-wave
components of the dþ is� pairing amplitude when fluc-
tuation effects are included self-consistently. Interestingly,
we find that there is a phase transition from a d-wave

(a) (b)

FIG. 1. Fluctuation-consistent saddle point. Panel (a) shows the
pairing amplitude (jΔj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

d þ Δ2
s

p
) and its d-wave and ex-

tended s-wave components,Δd andΔs, respectively, as a function
of doping p. Panel (b) shows the variation of the chemical
potential μ with doping p. In both these plots, the corresponding
quantities in the usual saddle point theory (i.e., without the
fluctuation corrections) are shown for comparison by dashed
curves. The dotted vertical lines mark the doping value
(pc ∼ 0.12) where the fluctuation-consistent theory has a phase
transition.
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superconductor for p > pc to a dþ is� superconductor
with predominantly extended s-wave character for p < pc,
at pc ∼ 0.12 (marked by a vertical dotted line). Within our
fluctuation-consistent theory this transition is a first order

phase transition. jΔj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

d þ Δ2
s

q
, the magnitude of the

pairing amplitude with the effect of fluctuations included, is
shown by the solid red line. Figure 1(b) shows the chemical
potential μ as a function of p, with the dashed line depicting
the usual saddle point values, and the green crosses
depicting the fluctuation-consistent saddle point results.
To understand better the phase transition at pc ∼ 0.12 we

analyze the slow and long-wavelength collective modes of
the pair condensate. This is done by analyzing the inverse
fluctuation propagator in the slow and long-wavelength
limit (q → 0). Generically, this system has two phase
modes and two amplitude modes corresponding to the
complex valued fluctuations of the pairing field on the
unique x and y bonds associated with each lattice site. For
p > pc, where there is only d-wave pairing, the normal
modes at q ¼ 0 are given by the symmetric and antisym-
metric combinations of the phase and amplitude modes:
the symmetric phase mode (Ps mode, which is also the
Goldstone mode of the d-SC order and is gapless in the
absence of coupling to the electromagnetic gauge field),
the antisymmetric phase mode (Pa mode), the symmetric
amplitude mode (As mode), and the antisymmetric ampli-
tude mode (Aa mode) [26]. In the underdoped region where
dþ is� pairs stabilize, the Ps mode and the Aa mode
continue to be normal modes in the q → 0 limit, while the
Pa mode and the As mode combine to give two new normal
modes. We continue to use the old nomenclature for these
new modes; the mode whose gap parameter [40] (M)
connects with the Pa mode of the d-wave condensate at the
transition point is still called the Pa mode, and the As mode
of the dþ is� condensate is defined in an analogous way.
Figure 2 shows the relevant properties of the collective

modes of the pair condensate as a function of p obtained
from our theory. The vertical dotted lines in all these plots
are at pc ∼ 0.12 where Fig. 1(a) shows the phase transition.
Figure 2(a) shows the stiffness (ρs) of the Ps mode which is
the gapless Goldstone mode. It is remarkable that ρs goes
to zero at p ∼ 0.055, consistent with the spirit of the
Uemura relation observed in experiments on the cuprates.
In Fig. 2(b) we show the gap parameter, MPa

, of the Pa

mode; in Fig. 2(c) the gap parameter of the Aa mode, MAa
;

and, in Fig. 2(d), the gap parameter, MAs
, of the As mode.

The phase transition at pc from d wave superconductivity
to dþ is� superconductivity is marked by the vanishing
gap parameter of the Pa mode [Fig. 2(b)]. Such a feature
would usually indicate a continuous phase transition, but
the inclusion of fluctuation effects turn it into a first order
phase transition with the actual gap [41] in the Pa mode
remaining finite at pc (see Fig. S3.4 of [34]). Furthermore,
we find that below p ∼ 0.055 there is no stable uniform

superconducting phase in any of the pairing channels,
extended s, d, and dþ is�, that we explore. This is marked
by the vanishing stiffness of the Ps mode and by the
softening of the Pa mode and the Aa mode.
Discussion.—As described in the previous paragraphs,

there are four distinct doping regions which emerge out of
our calculations: (1) the overdoped (p > 0.14), (2) the
moderately doped (0.1 < p < 0.14), (3) the underdoped
(0.055 < p < 0.1), and (4) the deeply underdoped
(p < 0.055) regions.
We begin with a discussion of our results on the

overdoped side vis-á-vis other theories of the t-J model
and the large-U Hubbard model, along with the exper-
imental observations in cuprate superconductors. In this
region the stiffness of the holon condensate is expected to
be large and, therefore, our fluctuation-consistent theory
would also be expected to be most dependable in this
region. Here, the d-wave pairing gap is known to grow as p
decreases in both VMC [16] (cf. the variational parameter
Δvar) and slave-boson mean field theory [5]. In contrast, our
fluctuation-consistent results are that the d-wave pairing
gap [41] first increases and then attains a plateau around
p ∼ 0.15. Interestingly, this behavior of the d-wave pairing
gap in the overdoped region agrees qualitatively with
cluster DMFT studies of the t-J model [19] and of the
closely related Hubbard model [20,42]. It is also in
qualitative agreement with a large-N theory that we had
presented in a similar setting [26]. Most importantly,
ARPES experiments on the cuprate Bi2212 [10] and
STM experiments on several cuprates [43] do find results
consistent with such a behavior of the superconducting gap
in the overdoped region. All these results put together
clearly suggest that the pseudogap [44], which increases

(a)

(c)

(b)

(d)

FIG. 2. Properties of the collective modes. All the data
presented are obtained at the fluctuation-consistent saddle point
and the vertical dotted line marks the doping (∼0.12) where the
fluctuation-consistent theory hosts a phase transition. Panel
(a) shows the stiffness of the Ps mode. Panel (b) has the gap
parameter of the Pa mode. Panel (c) depicts the gap parameter of
the Aa mode. And panel (d) has the gap parameter of the As mode.
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monotonically with decreasing doping, is distinct from the
pairing gap, at least in this region. Yet another quantitative
improvement that our theory provides over the slave-boson
mean field theory is the reduction in the value of doping at
which the d-SC dies out, from the rather large value of
p ∼ 0.45 to a realistic value of p ∼ 0.33 [see Fig. 1(a)]. The
latter compares favorably with the observed behavior in
overdoped cuprate superconductors.
In the moderately doped region our results are remark-

ably different from those of other theories of the t-J model.
We find that on approaching this regime from the over-
doped region, the d-SC makes a transition [45] to a
ðdþ is�Þ-SC at pc ∼ 0.12. The difference from other
numerical theories like cluster DMFT and variational
calculation using PEPS is, most likely, arising because
of their severe finite size limitations, and, hence, their
inability to include the effects of long-wavelength fluctua-
tions which are crucial to stabilize the ðdþ is�Þ-SC. Our
fluctuation-consistent theory does not have this limitation.
We also point out that we evaluate all the momentum sums
as Brillouin zone integrals, and hence, capture the con-
tribution of all long-wavelength Gaussian fluctuations
correctly in the infinite system size limit [46,47].
ARPES [10,11] finds a nodeless superconductor in

underdoped cuprates which has, however, been attributed
to several possible causes [11,48–52]. Interestingly, the
ðdþ is�Þ-SC that our theory finds within the t-J model is
such a nodeless phase arising from the interplay of strong
correlation effects and long wavelength fluctuations. We
are unaware of any phase sensitive experiments which
probe the order parameter symmetry (Josephson junction
interferometry experiments [53,54] and ring magnetometry
experiments [55]) that have been performed in the doping
range where nodeless superconductivity is observed [56].
Our theory provides a concrete suggestion for such experi-
ments with a prediction that the nodeless superconducting
state observed in underdoped cuprates has a dþ is�
symmetry. We point out that in the presence of defects a
dþ is� superconductor would generate spontaneous mag-
netization. By producing controlled defects, this fact can
also be used to distinguish a dþ is� superconductor from a
d-wave superconductor [57].
We have also computed the transverse conductivity,

σxyðk ¼ 0;ωÞ, and find that its imaginary component is
zero for all ω and for all dopings of our interest. This
implies that the dþ is� state, although it breaks time
reversal symmetry, will not by itself contribute to the polar
Kerr effect signal seen in experiments on the cuprates. This
is so because the uniform dþ is� state preserves T R,
where T is the time reversal operator and R rotates the
system anticlockwise by 90°. The experimental observation
that the polar Kerr effect onset temperature coincides with
the onset of charge density wave correlations [13] is an
evidence for the role of broken R in this physics. It is a
matter for further investigation whether the ðdþ is�Þ-SC in

the presence of charge density wave correlations can give
rise to PKE. However, given the range of doping over
which PKE is observed in the cuprates it is unlikely that the
ðdþ is�Þ-SC that we find in our study of the t-J model can
alone account for all of it, and investigations regarding the
possibility of time reversal broken pair density waves might
be relevant in this context [58,59].
With further underdoping, our theory predicts that the

extended s component of the pairing gap increases to
significantly higher values, while the d component dimin-
ishes completely by p ∼ 0.055. Another outstanding feature
of our theory is that the superfluid stiffness ρs vanishes at
around the same value of hole doping (∼0.055), which is
consistent with the Uemura relation observed in experi-
ments on several underdoped cuprates [27]. This would
imply that if the pseudogap phase in underdoped cuprate
superconductors has a contribution from preformed pairs,
those pairs are likely to be of the extended s type rather than
of d type. Further investigations will be required to see
whether this scenario can help explain aspects of the
observed Nernst effect in the pseudogap phase of the
cuprates [28,29]. Furthermore, the mass parameters corre-
sponding to the Pa mode and the Aa mode also approach
zero around the same doping (∼0.055). Consequently,
uniform superconductivity does not survive in any of the
pairing channels investigated, namely, d, extended-s or
dþ is�, below this doping. This, again, is consistent with
experiments on cuprates and leaves scope for other non-
superconducting phases observed close to half filling. It
must be noted that fluctuations of the internal gauge fields
will become important with underdoping, and may lead to
qualitative modifications of our results in the underdoped
and the deeply underdoped regimes. Addressing this issue
is outside the scope of this Letter.
To conclude, the results of our fluctuation-consistent

theory seem to agree better with experiments on cuprate
superconductors compared to the mean field slave-boson
theory and numerical methods, like VMC and cluster
DMFT methods. This is indeed encouraging and interest-
ing. However, we note that our method has an uncontrolled
approximation (no small parameter), and hence a math-
ematical proof of the correctness of our results is presently
unavailable. Even so, from a physical perspective this may
be a strong indication of weak vertex corrections (see
Refs. [60–62]). It would also be worth investigating
whether a similar fluctuation-consistent calculation gives
a better description for other interesting two dimensional
systems like the iron pnictide superconductors. In the
context of cuprates, we would like to end with a set of
questions which our study throws up and whose answers
can be very insightful: What is the nature of the state at
finite temperatures in the underdoped region in the pres-
ence of the dþ is� pairing with predominantly extended-s
character? What, if any, features of the cuprate pseudogap
may be understood within this scenario [63]? How do the
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nonpairing competing or intertwined orders seen in cup-
rates, which are typically most pronounced close to pc, fit
in? What happens in the deeply underdoped regime? What
lies beyond the Gaussian fluctuations which our theory
accounts for? We hope this work will prompt further
research towards addressing some of these questions.
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