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Ab initio nuclear physics tackles the problem of strongly interacting four-component fermions. The same
setting could foreseeably be probed experimentally in ultracold atomic systems, where two- and three-
component experiments have led to major breakthroughs in recent years. Both due to the problem’s
inherent interest and as a pathway to nuclear physics, in this Letter we study four-component fermions at
unitarity via the use of quantum Monte Carlo methods. We explore novel forms of the trial wave function
and find one which leads to a ground state of the eight-particle system whose energy is almost equal to that
of two four-particle systems. We investigate the clustering properties involved and also extrapolate to the
zero-range limit. In addition to being experimentally testable, our results impact the prospects of
developing nuclear physics as a perturbation around the unitary limit.
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The study of strongly interacting, ultracold fermionic
atoms has witnessed a large number of exciting develop-
ments, including the BEC-BCS crossover, the physics
of polarons, optical lattices, three- or many-component
experiments, and lower-dimensional systems, whether at
zero or finite temperature [1–4]. Experimentally the sys-
tems are trapped fluids, where pairing correlations typically
have a considerable impact on ground-state properties.
Some of the most accurate theoretical studies of these
systems have involved the use of quantum Monte Carlo
(QMC) or related methods. While early work focused on
the two-component problem at or near the unitary regime
[5–14], progress has also been made on the study of three-
or more-fermionic components [15–17]. A natural step is
to tackle the four-component problem, where one could
envision cold-atom experiments that directly probe the
strongly interacting regime to address questions such as
clustering in a many-particle system; crucially, a four-
component cluster is bosonic in nature, thereby increasing
the likelihood that heavier systems will be bound.
Experiments with cold fermionic atoms hold the promise

(in part already borne out [18]) of constraining aspects of
nuclear physics which are not amenable to terrestrial
experiments. Most obviously, pairing in two-component
Fermi gases is directly related to the physics of neutron-star
crusts [19–24]. In low-density neutron matter, the compo-
nents involved are neutrons with spin up (n↑) and spin
down (n↓). Atomic nuclei involve two additional compo-
nents of protons (p↑, p↓). Although the two-nucleon
system is not exactly at unitarity, it has been argued
that the properties of few-nucleon systems can be ob-
tained in perturbation theory around this limit [25–31].

Four-component fermionic systems thus might shed light
on issues like clustering in light nuclei and the convergence
to the thermodynamic limit, i.e., nucleonic matter.
In the unitary limit where the two-body scattering length

diverges and the binding energy is vanishingly small, the
two-body system is scale invariant and parameter-free. At
or close to the unitarity limit, weakly bound systems can be
described with an effective field theory (EFT), contact (or
pionless) EFT [32], where all interactions are of zero range.
For bosons and three- or more-component fermions, the
three-body system collapses [33] unless a three-body
interaction prevents it [34,35]; as a result, heavier systems
will also collapse. The three-body force contains a single
dimensionful parameter and gives rise to the Efimov effect
[36] thanks to a remaining discrete scale invariance.
Systems with more bosons also display the consequences
of discrete scale symmetry [37–46] and saturate at finite
density [47].
While the four-nucleon system is well described in

pionless EFT [25,48–53], results for heavier nuclear
systems (6Li, 16O, 40Ca) have so far been somewhat
disappointing: although binding energies are within the
error of the leading-order calculation, systems are unstable
with respect to breakup into 4He and 2H clusters [49,52,53].
As one pushes pionless EFT to larger systems, the issue
arises of whether the details of the interactions matter. In
recent decades the strongest contender to account for these
details has been chiral EFT [32], where contact interactions
are supplemented by exchanges of the lightest mesons
(pions). Nuclear many-body calculations now routinely
employ interactions from chiral EFT with much success
(for example Refs. [54–68]), but they do not saturate
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properly at leading order [69–71]. Properties of nuclear
binding and clustering have recently been explored in
the context of a lattice approach using chiral or minimal
interactions [72–74].
Here we consider for the first time four-component

unitary systems with more than four fermions. Like the
corresponding bosonic systems [47], these systems are
expected to be universal in the sense that all energies are
given by dimensionless numbers times the energy of the
three-body ground state, E3, or alternatively the four-body
ground-state energy E4 ¼ 4.611E3 [40]. We report on
novel quantum Monte Carlo calculations where the anti-
symmetrization required to respect the Pauli exclusion
principle is carried out explicitly. We use a variety of trial
wave functions as we have had to explicitly check and
minimize the effect of the fermion-sign problem on our
results. We find that the form of the trial wave function
plays a considerable role. Thankfully, our approach is
variational, meaning that if a trial wave function leads to
a low energy, we can discard other guesses for the trial
wave function which gave higher values for the energy.
Unlike bosonic systems, four is the maximum number of

four-component fermions that can be found in relative S
waves. We might then expect clustering when an integer
number of four particles are considered. We focus on the
simplest such system, containing eight bodies. This is the
analog of the 8Be nucleus, whose ground state is observed
to be a narrow resonance very close to the two-4He
threshold [75,76]. As we describe in the remainder of this
Letter, we find that eight four-component fermions at
unitarity do cluster into two four-particle subsystems.
This suggests that clustering is a universal feature of
weakly bound, multicomponent fermion systems, with
tantalizing implications to the wider program of producing
nuclear observables as small corrections to the correspond-
ing cold-atom ones. Since the binding energies of nuclei up
to 52Fe are close to the energies of the corresponding
number of independent alpha particles, a description of the
eight-particle system holds the promise of being extensible
to heavier systems.
Our Hamiltonian is

Ĥ ¼ −
ℏ2

2m

X
i

∇2
i þ

X
i<j

Vi;j þ
X
i<j<k

Vi;j;k; ð1Þ

where m is the particle mass, Vi;j is a two-body attractive
potential which acts between particles belonging to distinct
components, and Vi;j;k is a three-body repulsive potential
where, again, each particle within a triplet must belong to a
distinct component. At unitarity observables should be
insensitive to the form of the potentials, as long as their
ranges are small compared to interparticle distances. We
take Gaussian forms with a common range μ−1:

Vi;j ¼ −V2μ
2
2ℏ2

m
exp½−ðμrijÞ2=2�; ð2Þ

Vi;j;k ¼ V3

�
μ

4

�
2 2ℏ2

m
exp½−ðμRijk=4Þ2=2�; ð3Þ

where rij ¼ jri − rjj and Rijk ¼ ðr2ij þ r2ik þ r2jkÞ−1=2. The
strengths V2 and V3 are adjusted to ensure, respectively,
two-body unitarity and a nonzero four-body energy E4; as a
preliminary check, we ensured that our results for E4

matched the four-boson values from Ref. [47]. To produce
dimensionless quantities, we employ E4 or, alternatively,
the corresponding length R4 ¼ ð−2mE4=ℏ2Þ−1=2.
To solve for the ground-state energy of this Hamiltonian

we use a combination of the variational Monte Carlo
(VMC) and diffusion Monte Carlo (DMC) methods. The
VMC method is based on using trial wave functions that
attempt to capture the physics of the system being studied.
The VMC method evaluates the expectation value of the
Hamiltonian using the trial wave functions by computing:

EV ≈
1

M

XM
i¼1

ELðRiÞ; ð4Þ

where ELðRÞ ¼ ψ−1
T ðRÞĤψTðRÞ is the local energy, M is

the number of sample points, andR (orRi) encapsulates all
the particle positions; this is the result of attacking a
multidimensional integral via the Monte Carlo approach.
The trial wave functions ψT contain variational parameters
that are adjusted to find a lower VMC energy, carried out
via automated optimization techniques [77]. Once the
VMC energy cannot be lowered further by adjusting these
parameters we move onto the diffusion Monte Carlo
method. In DMC we are still making random walks in
coordinate space via so-called walkers. However, rather
than evaluating a variational estimate of the ground-state
energy, we are propagating through imaginary time to
project to the ground state jψ0i:

jΨðτ → ∞Þi ¼ lim
τ→∞

e−ðĤ−ET ÞτjΨð0Þi
∝ jψ0i lim

τ→∞
e−ðE0−ETÞτ; ð5Þ

where we have used imaginary time τ ¼ it and have
decomposed the trial wave function into the energy eigen-
states using the completeness relation. The trial energy ET is
included as an offset to the Hamiltonian. Of course, when
propagating in imaginary time one has to also address the
fermion-sign problem; we employ the fixed-node approxi-
mation, which implies that our final DMC answers are upper
bounds to the true ground-state energy.
In this work specifically, we study the ground-state

energy of an eight-particle system. Such a system is made
up of eight fermions, with two fermions each belonging to
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four components (I, II, III, IV). We investigated three
possibilities of increasing physical content, so we note
ahead of time that Eq. (8) is the main new idea in this Letter.
First, we extended the two-component BCS wave function
(successfully used in DMC calculations of spin-1=2 Fermi
gases [5]) to the problem of four components:

ψA
T ¼ fJ

h
ΦI;II

BCSΦ
III;IV
BCS þΦI;III

BCSΦ
II;IV
BCS þΦI;IV

BCSΦ
II;III
BCS

i
ð6Þ

where Φm;n
BCS is the BCS function that pairs components m

and n and fJ is a nodeless Jastrow function.Φm;n
BCS is simply

the form used when a system contains only two compo-
nents; Eq. (6) applies it to all permutations of component
pairing. The motivation behind this choice is the success of
Φm;n

BCS in describing the two-component system: via the use
of 10 variational parameters, the two-component unitary
Fermi gas is described extremely well [5,8].
Second, we employed a “cluster wave function,”

motivated by the forms used for 8Be in the mid-20th
century [78]:

ψB
T ¼ A½e−β0

P
i¼1;3;5;7

ðri−r1;3;5;7CM Þ2 × e−β0
P

j¼2;4;6;8
ðrj−r2;4;6;8CM Þ2

× e−β1ðr
1;3;5;7
CM −r2;4;6;8CM Þ2ðr1;3;5;7CM − r2;4;6;8CM Þn� ð7Þ

where β0, β1 and n are variational parameters. In this
notation we have arbitrarily labeled the positions of the
particles that belong to the component I as r1 and r2,
component II has r3 and r4 and so on and we have written
the center of mass for particles a, b, c, d as ra;b;c;dCM . In
Eq. (7), A is the antisymmetrization operator, needed to
make the form of this wave function appropriately anti-
symmetric under exchange of identical particles, belonging
to the same component. Here, clustering is captured in the
first two exponential terms where a positive β0 causes a
decay in the wave function as particles move away from the
center of mass of their cluster. Intercluster interactions are
dictated by the remaining exponential and polynomial
terms, and can be tuned with β1 and n to favor close
mixing of the two clusters, or for the two to remain
separate.
Third, we improved the trial wave function of Eq. (7)

by extending it to also allow for more complicated
correlations:

ψC
T ¼ A

�
Fðr1;3;5;7CM − r2;4;6;8CM Þ × fJðr1; r3; r5; r7Þ

× fJðr2; r4; r6; r8Þ ×
Y

n¼1;3;5;7
m¼2;4;6;8

gðrnmÞ
�
; ð8Þ

where:

Fðr1;3;5;7CM − r2;4;6;8CM Þ ¼ ð1 − γe−ðr
1;3;5;7
CM −r2;4;6;8CM Þ2=α2Þ−1; ð9Þ

and:

fJ ¼
Y
i

e−αJr
2
i

Y
i<j

K tanhðμJrijÞ coshðγJrijÞ
rij

×
Y
i<j<k

euJe
−R2

ijk
=ð2r2

J
Þ
; ð10Þ

and, finally:

gðrnmÞ ¼ ð1 − γge−r
2
nm=α2gÞ−1: ð11Þ

The K and γJ are chosen such that the function
K tanhðμJrijÞ coshðγJrijÞ=rij goes to 1 and its derivative
goes to 0 at rij ¼ d, where d is referred to as the “healing
distance.” In this process, α, γ, αJ, μJ, d, uJ, rJ, γg, and αg
are variational parameters which are adjusted during VMC
simulations to find an upper bound on the energy.
The physical motivation behind ψC

T was to capture the
behavior seen in the four-particle boson case, which is
equivalent to the four-particle fermion case when all
fermions belong to distinct components. The fJ functions
are nodeless and have been used previously in simulations
of bosonic clustering. In this context we are using this
function to account for the formation of four-particle
clusters (where each particle in the cluster belongs to each
one of the distinct components), that we suspect will occur
in the eight-particle case. Equations (9) and (11) attempt to
account for cross-cluster interactions, Eq. (9) is a function
of the distance between the centers of mass of the two
clusters, while Eq. (11) is simply a function of the
separation distances between individual particles belonging
to different clusters; both go to unity at large distances. The
intercluster pair correlations allow for a deformation of the
individual clusters to enhance the attractive interaction
between different components between clusters, and to
reduce the impact of the Pauli repulsion between like
particles. It is this additional correlation that might allow
the system to bind. In a Born-Oppenheimer picture, it also
suggests that if two N-body clusters are bound (here with
N ¼ 4), problems with more than four components will
also bind two clusters since the ratio of attractive unlike
interactions to Pauli repulsion is increasing with the
number of components.
We can qualitatively interpret the physical content of ψC

T
by plotting out the paths of the particles over some number
of VMC steps. Figure 1 shows the system from the
simulation using Eq. (8) over 5000 VMC steps, taken after
equilibration. We can see that the system forms two
clusters, rather than a larger single cluster containing all
of the particles; this is similar to what was seen in 8Be using
the nuclear Green’s function Monte Carlo [79] method.
While the two clusters here appear to be distinct, it is worth
keeping in mind that the length scales involved in ψC

T are
such that the two regions communicate with each other;
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in the DMC method, the two clusters tend to drift apart.
Note that in our case the two-body interactions have been
tuned at unitarity, namely our calculations correspond to a
deuteron with vanishing binding energy. In the figure, we
have divided all positions with R4ðμ̄Þ, the length corre-
sponding to the range at which μ̄R4ðμ̄Þ ¼ 13.64.
A simple benchmark for these calculations is to compare

the energy calculated for the eight-particle system to that of
a four-particle bosonic system with the same potential
parameters. If our simulations have successfully reached
the ground state of the eight-particle system we expect the
energy found to be a factor of at least two times that of
the energy of the corresponding four-particle system. We
expect this upper limit because it should be possible for the
system to produce two four-particle clusters (that are
identical to those found in the four-particle simulation)
which do not interact with one another, due to the tiny
range of our potentials. If this is the case, the energy of the
eight-particle system should be exactly two times the four-
particle system, due to the two independent energy con-
tributions of each cluster.
The results of this test are displayed inFig. 2. In this plotwe

see the running averages over imaginary time in DMC
simulations for all three trial wave functions for a system
where V3 ¼ 3.0 and μ̄R4ðμ̄Þ ¼ 13.64. We divide our E8s
with the large-imaginary-time (central) value ofE4. As can be
seen in the figure, the running averages equilibrate over
imaginary time and eventually converge to an answer with an
acceptable statistical uncertainty. In this test, the trial wave
function from Eq. (8) converged just below the 2E4 value.
This test was carried out for multiple variations of adjusting
the potential parameters and in all of these the same outcome
was observed. More specifically, we varied the magnitude of
V3 (see the Supplemental Material [80]): this impacts the
value ofE4, but each timewe produced the same ratioE8=E4

within statistical error; this suggests that our findings are
independent of the details of the short-range interaction.
It is worth highlighting that the computations employing

ψC
T were the only ones that led to an eight-particle system

whose energy is one or two standard deviations away from
breakup into two four-particle clusters. As a matter of fact,
the runs with ψA

T did not even come close to the 2E4 value:
despite having ten variational parameters at its disposal, the
BCS determinant is designed for a gas and therefore does
not do a good job of capturing clustering physics. The ψB

T
wave function, on the other hand, that is cluster aware does
bring the energy to within 5% of 2E4; of course, this is still
noticeably different than the answer for two four-particle
clusters, similarly to what was found in Ref. [52]. While
physically we know that the system could dissolve into two
disconnected clusters, it is worth reiterating that DMC
computations impose a nodal Ansatz: if this is sufficiently
constricting, then the intuitively expected state of matter
may not materialize. This is another way of saying that ψC

T
effectively captures both the clustering physics and more
involved correlations.
Once the testing of the trial wave function was com-

pleted, calculations were performed over a set of varying
potentials. We are interested in the zero-range interaction
limit, therefore in our simulations we proceeded to also
vary μ; we make this dimensionless by forming the product
μR4ðμ̄Þ. In Fig. 3 we plot the ratio of the energies of the
eight-particle system and the four-particle system. We can
see that as the range of the interactions become smaller, the
absolute value of the energy of the eight-particle system
becomes larger; this is consistent with the phase-shift
expansion, which tells us that the effective range tends
to reduce the overall attraction. In order to extrapolate, we
fit our DMC results to the form:

E8

E4

¼ c0 þ
c1

μR4ðμ̄Þ
þ c2
½μR4ðμ̄Þ�2

. ð12Þ

In the limit of μR4ðμ̄Þ going to infinity, namely a zero-range
interaction, the ratio of the eight-particle to four-particle
system goes to 2.04� 0.05 where we carried out standard
error propagation. We also checked that employing a
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higher-degree (or lower-degree) model does not qualita-
tively change the main result: E8 is always within one
standard deviation of 2E4.
In summary, we have extended the DMC approach,

which has in the past been applied to the two-component
unitary Fermi gas, to four-component unitary fermions.
Employing microscopic interactions containing solely two-
and three-body central potentials, we have investigated
three different types of trial wave function, two of which
allow for clustering to emerge. For our most general form
of the wave function, we have produced an eight-particle
state which is very close to decaying into four-particle
clusters. These results constitute an example of pushing the
applicability of pionless EFT to heavier systems. One could
thus add in a small perturbation which would bring 8Be to
the physical point. More generally, our findings could be
experimentally tested in the future, when it becomes
possible to manipulate four components of strongly inter-
acting fermionic atoms in the lab.
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