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We study the three-body scattering hypervolumeD of atoms whose scattering length a is on the order of
or smaller than the typical range rvdW of the van der Waals attraction. We find that the real part ofD behaves
universally in this weakly interacting regime (jaj=rvdW ≲ 1) in the absence of trimer resonances. This
universality originates from hard-spherelike collisions that dominate elastic three-body scattering. We use
this result to make quantitative predictions for the thermodynamics and elementary excitations of an atomic
Bose-Einstein condensate in the vicinity of a quantum tricritical point, including quantum droplets
stabilized by effective three-body interactions.
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Introduction.—The thermodynamics of ultracold dilute
quantum gases is determined by the asymptotic behavior of
few-body scattering processes. Bosonicmany-body systems
can be universally described with only one parameter to
characterize the two-body interactions: the s-wave scatter-
ing lengtha [1]. However, even in the limita → 0when two-
body interactions effectively vanish, system properties are
still determined by few-body scattering. The quantum phase
diagram of a uniform Bose-Einstein condensate (BEC) in
this limit is determined by the three-body scattering hyper-
volumeD that is the analog of a [2,3]. Provided ReðDÞ > 0,
a quantum tricritical point exists at a ¼ 0 where the
boundaries between liquid and gaseous ground states and
vacuum meet [3]. Quantum tricritical points are rare,
occurring for certain metallic magnets [4–6] and for a
generalized Dicke model [7].
The ground-state energy density E of a uniform BEC at

a ¼ 0 is determined by D via

EðnÞ ¼ ℏ2Dn3

6m
þ � � � ; ð1Þ

where the dots indicate terms with higher powers of the
number density n [2]. In the liquid phase when a < 0 and
ReðDÞ > 0, effective three-body repulsion and two-body
attraction compete. This provides a three-body stabilization
mechanism for liquid quantum droplets against collapse [8].
In Ref. [9], it was suggested that the experimentally
observed collapse [10–13] is a relaxation process towards
the liquid equilibrium state. Recently, quantum droplets
were predicted [14] and experimentally observed in both
mixed [15–17] and dipolar BECs [18–20], however, these
systems were based on two-body stabilization mechanisms.
Additionally, in typical alkali systems, D acquires an
imaginary part proportional to the three-body recombination
rate [21,22], so that these states are inherently metastable.
Ultimately, a quantitative understanding of droplet proper-
ties near the quantum tricritical point depends on the sign
and magnitude of ReðDÞ for realistic systems.

For weakly interacting systems, Refs. [2,3,21,23] inves-
tigated the scattering hypervolume, demonstrating how D
is influenced by nonuniversal three-body quasibound states
[21,23] and is connected to physical observables at a ¼ 0
[3]. Nevertheless, none of these studies solved the three-
body problem for two-body interaction models that contain
the long-range atomic van der Waals attraction. We find
that this is the essential ingredient for quantitative pre-
dictions ofD, whose real part is universally fixed by the van
der Waals range rvdW ¼ ðmC6=ℏ2Þ1=4=2, where C6 is the
dispersion coefficient describing the long-range behavior of
the interatomic interaction. Although the mechanisms
differ, van der Waals universality also determines D in
the strongly interacting regime ðjaj=rvdW ≫ 1Þ by setting
the spectrum of Efimov trimers [24–35].
In this Letter, we present a numerical study of the

scattering hypervolume for identical bosons interacting
via pairwise van der Waals potentials in the weakly
interacting regime (jaj≲ rvdW). We find that ReðDÞ is
predominantly determined by a and rvdW and analyze the
origin of this van der Waals universality. This is used to
make universal quantitative predictions for atomic BECs
near the quantum tricritical point, including quantum
droplets stabilized by effective three-body interactions.
Method.—Here we use the Alt, Grassberger, and

Sandhas (AGS) approach [36] which has been proven to
be a powerful method for calculating the scattering hyper-
volume [23]. The AGS equations,

U00ðzÞ ¼
X3
α¼1

TαðzÞG0ðzÞUα0ðzÞ;

Uα0ðzÞ ¼ G−1
0 ðzÞ þ

X3
β¼1
β≠α

TβðzÞG0ðzÞUβ0ðzÞ

for α ¼ 1; 2; 3; ð2Þ
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are Faddeev equations for the three-body transition oper-
ators UαβðzÞ, where z denotes the three-body energy. The
index αðβÞ labels the partitions for the outgoing (incoming)
state which consists of three free particles (α ¼ 0) or a free
particle and dimer (α ¼ 1, 2, 3). G0ðzÞ is the free resolvent
ðz −H0Þ−1, where H0 is the three-body kinetic energy
operator for the relative motion. TαðzÞ represents the two-
particle transition operator for the pair βγ (β, γ ¼ 1, 2, 3,
β ≠ γ ≠ α), i.e., TαðzÞ ¼ Vβγ þ VβγG0ðzÞTαðzÞ, where Vβγ

is the interaction potential acting within the pair βγ. From
the transition amplitude corresponding to U00ð0Þ, we
determine the scattering hypervolume in the same way
as described by Ref. [23] which adopts the Weinberg
expansion for TαðzÞ [37,38].
In the present study, we analyze the scattering hyper-

volume for identical bosons that interact via various van der
Waals potentials, indicated by VLJ, Vzero, Vexp, and Vsc.
Their long-range behavior is described by the van derWaals
tail −C6=r6, but their short-range behavior is completely
different. Here VLJ is the Lennard-Jones potential

VLJ ¼ −
C6

r6

�
1 −

λ6

r6

�
; ð3Þ

where λ locates the potential barrier. The formulas for the
other potentials can be found in the Supplemental Material
[39]. By adjusting the potential depths, we tune the scatter-
ing length a and the number of two-body bound states [40].
We indicate the number of s-wave dimer states by adding an

additional index to the potential name. For example, Vð1Þ
LJ

supports one s-wave dimer state.
van der Waals universality.—Figure 1 shows a com-

parison of D in the weakly interacting regime for multiple
van der Waals potentials. Despite the presence of several
three-body resonances, ReðDÞ behaves universally in con-
trast to ImðDÞ. Physically, ImðDÞ is determined by recom-
bination pathways where three atoms approach at short
distances, whereas ReðDÞ is determined through many
competing pathways for elastic scattering at different length
scales. When the long-range pathways dominate, ReðDÞ is
set by the van der Waals tail and the asymptotics of the two-
body scattering wave function characterized by rvdW and a,
respectively. We note that this picture only applies in the
absence of a three-body resonance where the universality in
ReðDÞ can be broken as shown in Fig. 1.
To identify the dominant pathway for elastic three-body

scattering, we study the scaling behavior of ReðDÞ. In the
strongly interacting regime (jaj=rvdW ≫ 1), pathways that
involve a single reflection from the three-body effective
potentials contribute to D as 1689a4 [23,27], both for
positive and negative scattering lengths. This reflection
occurs off a barrier in the three-body effective potential
which acts as a hard hypersphere of hyperradius jaj. A
similar resultD ¼ 1761.5a4 is found for bosons interacting
pairwise via a hard-sphere potential [2], whose repulsive

character makes it inherently different from the attractive
potentials considered in this Letter. However, in the weakly
interacting regime (jaj=rvdW ≲ 1), the scattering length
cannot be the only length scale that determines the location
of the barrier. Therefore we generalize the hard-hyper-
sphere radius Rhh in the hard-hypersphere formula,

ReðDÞ ¼ 1689R4
hh; ð4Þ

to ja − a�hhj, where the offsets a�hh capture finite-range
effects. We choose a�hh such that the hard-hypersphere
formula matches the value of ReðDÞ at a=rvdW ¼ �1. This
results in the universal values aþhh=rvdW ¼ −0.010ð3Þ and
a−hh=rvdW ¼ 0.474ð7Þ for which the uncertainties are esti-
mated by the deviation among the considered potentials.
That Eq. (4) with Rhh ¼ ja − a�hhj describes ReðDÞ over a
range of scattering lengths as shown in Fig. 2 confirms the
dominance of hard-hyperspherelike collisions in the
weakly interacting regime, except in the crossover regime
−0.1≲ a=rvdW ≲ 0.6.
As long as Rhh > λ, where λ is a characteristic length

scale of the short-range details of the interaction potential,
one can expect that Rhh is set by a and rvdW. Figure 2 shows
that the regime in which ja − a�hhj does not describe Rhh is
roughly determined by Rhh ≲ λ. In the limit of deep van der
Waals potentials, λ=rvdW approaches zero. This implies that
the −C6=r6 behavior is approached at smaller values of
r=rvdW. Therefore, we expect that ReðDÞ of deep van der
Waals potentials behaves universally in the complete
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FIG. 1. Three-body scattering hypervolumeD corresponding to
multiple van der Waals potentials as a function of the two-body
scattering length a [41]. The inset shows the real part of D near
the zero crossing of a.
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weakly interacting regime in the absence of trimer
resonances [42].
For a Lennard-Jones potential supporting no two-body

bound states (Vð0Þ
LJ ), we findD=r4vdW ¼ 86� 2 at a ¼ 0 and

compare this result to the value 90 predicted by Zwerger
[3,39,43]. This prediction is based upon an earlier many-
body calculation for the energy per particle of a Bose fluid
at zero temperature and zero pressure near the quantum
tricritical point [44]. This close agreement demonstrates
that D can be determined from properties of ultracold Bose
systems near the quantum tricritical point, which we turn to
presently.
Thermodynamics and elementary excitations.—How

does the scattering hypervolume determine the ground-
state properties and excitations of a BEC near the quantum
tricritical point? To understand these effects, we follow
Ref. [3] and study the effective Lagrangian density valid at
weak interactions and zero temperature,

L ¼ iℏ
2
½Ψ� _Ψ −Ψ _Ψ�� − ℏ2

2m
j∇Ψj2 − VextðrÞjΨj2

−
2πℏ2a
m

jΨj4 − ℏ2D
6m

jΨj6: ð5Þ

The Gross-Pitaevskii equation follows from minimizing the
action S ¼ R

d3rdtL, giving

iℏ _Ψ¼−
ℏ2

2m
∇2ΨþVextðrÞΨþ4πℏ2a

m
jΨj2Ψþℏ2D

2m
jΨj4Ψ:

ð6Þ

The condensate wave function is formulated as Ψðr; tÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðr; tÞp

e−iϕðr;tÞ satisfying the Josephson relation ℏ _ϕ ¼ −μ

under stationary conditions. In Eq. (6), higher-order effects
have been ignored as well as the energy dependence of the
few-body scattering amplitudes [45–47]. In the following,
we focus on signatures of D in uniform and trapped
systems with VextðrÞ ¼ mω2

hoðλ2xx2 þ λ2yy2 þ λ2zz2Þ=2. We

define the oscillator length lho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωho

p
and the geo-

metric means ω̄ ¼ ωhoðλxλyλzÞ1=3 and l̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω̄

p
. In this

analysis, we neglect the imaginary part of D since our

results for Vð1Þ
LJ show that jReðDÞ=ImðDÞj varies from

roughly 10 near a ¼ 0 to roughly 25 near a=rvdW ¼ �1,
and we return to this point below when discussing the
experimental outlook.
At the point a ¼ 0, where we estimate ReðDÞ=r4vdW ≈

100, Eqs. (5) and (6) contain only effective three-body
interactions. This regime for a uniform gas was considered
in Ref. [3], finding chemical potential μ ¼ Dℏ2n2=2m,
pressure P ¼ ð8m=9Dℏ2Þ1=2μ3=2 and sound velocity c¼
ℏn

ffiffiffiffi
D

p
=m. For the ground state of a trapped gas, the Thomas-

Fermi approximation gives nðrÞ¼ð2m½μ−VextðrÞ�=
Dℏ2Þ1=2. After normalization, the chemical potential is
fixed to μ=ℏω̄ ¼ ζ1=4=π in terms of the three-body
Thomas-Fermi parameter ζ ¼ DN2=l̄4. Likewise, integrat-
ing the thermodynamic relation μ ¼ ∂NE gives energy
per particle E=N ¼ 2μ=3, from which we infer the inter-
action energy per particle Eint=N ¼ μ=6 as a consequence
of the virial theorem [48]. At the cloud boundaries
μ ¼ mω2

hoλ
2
ηR2

η=2 (η ¼ x, y, z), and we estimate the spatial
extent of the cloud from the geometric mean of the semi-
axes R̄≡ ðRxRyRzÞ1=3 ¼

ffiffiffiffiffiffiffiffi
2=π

p
l̄ζ1=8. Compared to the

Thomas-Fermi limit for two-body interactions, we find
that a smaller portion of the total energy is involved in
interactions, however, due to the N2 scaling of ζ, all
energies and radii scale with higher powers of N.
To investigate the shift of discretized collective modes in

a harmonic trap at a ¼ 0, we use a time-dependent trial
wave function [49–51]

Ψðx; y; z; tÞ ¼ AðtÞ
Y

η¼x;y;z

e−½ðη−η0Þ2=2w2
η �þiηαηþiη2βη ; ð7Þ

with time-dependent variational parameters fwη; η0; αη;
βηgη¼x;y;z. The magnitude of A is set by particle number
conservation. Minimizing the action with respect to the
variational parameters, we find

∂2
τ η0 þ λ2ηη0 ¼ 0; ð8Þ

∂2
τvη þ λ2ηvη ¼

1

v3η
þ K
vηðvxvyvzÞ2

ðη ¼ x; y; zÞ; ð9Þ

with K ¼ 2DN2=9
ffiffiffi
3

p
π3l4ho and dimensionless scalings

vη ¼ wη=lho and τ ¼ ωhot. Equation (8) describes dipole
oscillations of the condensate center with trap frequencies
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FIG. 2. The hard-sphere radius Rhh ¼ ½ReðDÞ=1689�1=4 corre-

sponding to the potential Vð1Þ
LJ (green solid line) as a function of

the two-body scattering length a. The dashed and dash-dotted
curves show ða − aþhhÞ=rvdW and ða−hh − aÞ=rvdW, respectively,
for which a�hh is modified to match ReðDÞ at a=rvdW ¼ �1. The
values of aþhh=rvdW and a−hh=rvdW are −0.012 and 0.477, respec-
tively. The dotted curve displays the position λ=rvdW of the

repulsive barrier of Vð1Þ
LJ . Note that Rhh is slightly affected by a

trimer resonance near a=rvdW ≃ −0.3 [39].
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in agreement with the Kohn theorem [52]. Linearizing
Eq. (9) about equilibrium, yields mode frequencies
ω022, ω100, and ω020 in terms of principle and angular
quantum numbers parametrized as ωnlm [49] (see
Ref. [39]). Our results for these modes at a ¼ 0 are shown
in Figs. 3(a)–3(d) over a range of geometries and values of
K compared against results in the noninteracting and
Thomas-Fermi limits. Experimentally, D can be inferred
from frequency shifts intermediate to these limits. From
Fig. 3(d), this contrast is maximized for the breathing mode
ω100 in an isotropic geometry. In the Thomas-Fermi limit,
this mode shifts to 2

ffiffiffi
2

p
ωho, which is beyond the resultffiffiffi

5
p

ωho for two-body interactions [53]. Physically, the
simultaneous compression of this mode along all axes
leads to increased densities near trap center and the largest
nonlinear interaction effects [54].
For a < 0, it is possible thatD > 0 can stabilize the BEC

against collapse. Taking the Gaussian trial wave function of
Eq. (7) with η0 ¼ αη ¼ βη ¼ 0 and wη ¼ w, we minimize
the energy

E ¼ 3ℏ2

4m
N
w2

þ ℏ2affiffiffiffiffiffi
2π

p
m

N2

w3
þ ℏ2D

18
ffiffiffi
3

p
π3m

N3

w6
ð10Þ

in the absence of a trapping potential for a fixed number of
particles N. We find that no droplets exist for N ≤ Nc,
where

Nc ¼
27=2

311=4
ffiffiffi
π

p
ffiffiffiffi
D

p

a2
: ð11Þ

The droplets are metastable for Nc < N ≤ 3
ffiffiffi
3

p
Nc=4 ¼ Ns

and stable for N > Ns. The variational dependence of the

energy as a function of the width w is illustrated in Fig. 4(a)
for the unstable, metastable, and stable regimes. The
density profiles of the droplets numerically obtained from
Eq. (6) are depicted in Fig. 4(b) for various N which shows
that the Gaussian trial wave function is reasonable near the
metastable regime. Figure 4(c) shows the phase diagram of
the Bose fluid for a < 0 using Eq. (4) with Rhh ¼ ja −
0.477rvdWjwhile neglecting ImðDÞ. For largeN the density
profile is almost constant with density n0 ¼ 6πjaj=D [8],
which is approximately a factor 2.18 larger than the center
density of a droplet with N ¼ Nc. In the large N limit, the
Gaussian trial wave function overestimates the center
density by roughly a factor 1.84. Previous estimates of
n0 in Ref. [9] are larger by roughly a factor of 5 to 10 than
our result, which we attribute to an underestimation of
effective three-body repulsion in that work.
Experimental outlook.—Let us now discuss the exper-

imental possibilities to observe the effects of D. For this
purpose, we take ImðDÞ into account in the typical lifetime
τlife ¼ 1=L3n2, where L3 ¼ −ImðDÞℏ=m determines the
loss rate of atoms from the BEC via three-body recombi-
nation [21]. For quantum droplets with density n0 and
chemical potential μ0 ¼ −6π2ℏ2a2=mReðDÞ [8], we com-
pare τlife to the characteristic timescale τ0 ¼ ℏ=jμ0j and
find τlife=τ0 ¼ −ReðDÞ=6ImðDÞ, which is typically
larger than one according to our results for D. Since
τlife ∝ ½ReðDÞ�2=ImðDÞa2, longer lifetimes can be achieved
at smaller jaj. However, the critical number Nc also
increases in this limit [see Fig. 4(c)].

(a) (b)

(c) (d)

FIG. 3. Collective mode frequencies at a ¼ 0 versus K ¼
2DN2=9

ffiffiffi
3

p
π3l4ho for (a) isotropic, (b) cigar, and (c) pancake

geometries. We set λx ¼ λy ¼ 1 and vary λz. The ω020 and ω022

modes are degenerate for an isotropic trap. Dashed lines indicate
results in the noninteracting and Thomas-Fermi limits. (d) Con-
trast δωnlm ≡ ωnlmjK≫1 − ωnlmjK¼0 versus trap aspect ratio λz.

FIG. 4. Ground-state properties of Bose droplets. (a) Illustrated
dependence of the energy E given by Eq. (10) with width w
for N > Ns (solid), N ¼ Ns (dashed), and N ¼ Nc (dotted).
(b) Numerical ground-state profile versus radial coordinate for
N=Ns ≈ 1 (dotted), 10 (dash-dotted), 100 (dashed), and 1000

(solid) evaluated at a ¼ −0.08rvdW taking our result for Vð1Þ
LJ ,

ReðDÞ ¼ 197r4vdW (see Fig. 1 inset), compared with the large-N
density n0 indicated by the solid red curve. (c) Droplet width w
versus a and N from the Gaussian trial wave function Eq. (7)
using Eq. (4) with Rhh ¼ ja − 0.477rvdWj and neglecting ImðDÞ.
The liquid-to-gas transition at Nc is indicated by the solid line.
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To observe the collective mode frequencies at a ¼ 0, we
require τlife > τho ¼ 2π=ωho. In the Thomas-Fermi limit,
we find

τlife
τho

¼ −
ReðDÞ
ImðDÞ

1

2 × 35=8ð2πÞ3=4λ1=2z K1=4
ð12Þ

for cylindrically symmetric traps with λx ¼ λy ¼ 1 using
the center density to estimate τlife. In general, smaller λz is
advantageous for achieving large K for fixed τlife=τho and
D. Figure 3(d) shows that δω022=ωho and δω100=ωho are
roughly 0.5 for small λz which makes these modes suitable
for extracting ReðDÞ from the K dependence of the
corresponding mode frequencies. Cigar-shaped traps can
also be used to measure the speed of sound at a ¼ 0
provided that the characteristic distance cτlife is large
enough to resolve experimentally. Using our previous
estimate for τlife in the Thomas-Fermi limit, we find

cτlife ¼ −
ffiffiffi
π

2

r ½ReðDÞ�5=4
ImðDÞ

ffiffiffiffi
N

p

ζ3=8
; ð13Þ

which scales as λ−1=4z .
Conclusion.—We study the scattering hypervolume D

for identical bosons interacting via pairwise van der Waals
potentials. Our results show that ReðDÞ is predominantly
determined by the long-range two-body properties rvdW
and a. The van der Waals universality of this behavior is
due to dominant hard-hypersphere scattering. However,
ImðDÞ depends strongly on the short-range details of the
interaction, resulting in nonuniversal behavior. In the limit
of vanishing a, ReðDÞ determines the quantum phase
diagram near the tricritical point. Using the van der
Waals universality of ReðDÞ, we make quantitative pre-
dictions for the properties of atomic BECs, including the
formation of quantum droplets.
Further studies of D for deeper van der Waals potentials

need to be conducted to test the robustness of the universal
behavior in ReðDÞ in the weakly interacting regime. The
influence of multichannel physics on D could lead to new
interesting phenomena at small scattering lengths due to
additional parameters characterizing the zero crossing of a
[55–57]. Dynamical studies including effective three-body
repulsion are needed to understand droplet formation.
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