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Theories beyond the standard model often predict the existence of an additional neutral boson, the Z'.
Using data collected by the Belle II experiment during 2018 at the SuperKEKB collider, we perform the
first searches for the invisible decay of a Z’ in the process e™e™ — u*u~Z' and of a lepton-flavor-violating
Z'inete™ — e*uTZ'. We do not find any excess of events and set 90% credibility level upper limits on the
cross sections of these processes. We translate the former, in the framework of an L, — L theory, into upper

limits on the Z' coupling constant at the level of 5 x 1072 — 1 for M, <6 GeV/c?.

DOI: 10.1103/PhysRevLett.124.141801

The standard model (SM) is a successful and highly
predictive theory of fundamental particles and interactions.
However, it cannot be considered a complete description of
nature, as it does not account for many phenomena,
including dark matter.

The L, — L, extension of the SM [1,2] gauges the
difference of the leptonic muon and tau number, giving
rise to a new vector boson, the Z’. The Z’ couples to the SM
only through the y, 7, v, and v,, with coupling constant ¢'.
The L, — L, model is potentially able to address important
open issues in particle physics, including the anomalies in
the b — sutu~ decays reported by the LHCb experiment
[3], the anomaly in the muon anomalous magnetic moment
(9—2), [4], and dark matter phenomenology, if extra
matter is charged under L, — L [1,5]. We investigate here,
for the first time, the specific invisible decay topology
ete™ - utu~7', 7 — invisible, where the Z' production
occurs via radiation off a final state muon. The decay
branching fractions (BF) to neutrinos are predicted to vary
between 33% and 100% depending on the Z’ mass [5]. This
model (“standard Z"” in the following) is poorly con-
strained at low masses. Related searches have been per-
formed by the BABAR and CMS experiments for a Z’
decaying to muons [6,7]. Our search is, therefore, the first
to have some sensitivity to Z’ masses mz < 2m,,. If the Z'
is able to decay directly into a pair of dark matter particles
X7, one assumes BF(Z' — yy) ~ 1 due to the expected
much stronger coupling relative to SM particles. We
provide separate results for this scenario, which is not
constrained by existing measurements.

The second scenario we consider postulates the existence
of a lepton-flavor-violating (LFV) boson, either a scalar or
a vector (“LFV Z"” in the following) which couples to

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

leptons [8,9]. We focus on the LFV e — y coupling. While
the presence of LFV mediators can be constrained by
measurements of the forward-backward asymmetry in
ete™ — utu~ [9,10], we present here a direct, model-
independent search of ete™ — eTuTZ', Z' — invisible.
The presence of missing energy decays make these
searches especially suitable for an e*e™ collider.

The Belle II detector [11] operates at the SuperKEKB
electron-positron collider [12], located at the KEK labo-
ratory in Tsukuba, Japan. Data were collected at the center-
of-mass (c.m.) energy of the T'(4S) resonance from April to
July 2018. The energies of the electron and positron beams
are 7 and 4 GeV, respectively, resulting in a boost of fy =
0.28 of the c.m. frame relative to the lab frame. The
integrated luminosity used in this analysis amounts to
276 pb~! [13].

The Belle II detector consists of several subdetectors
arranged around the beam pipe in a cylindrical structure. A
superconducting solenoid, situated outside of the calorim-
eter, provides a 1.5 T magnetic field. Subdetectors relevant
for this analysis are briefly described here; a description of
the full detector is given in Refs. [11,14]. The innermost
subdetector is the vertex detector (VXD), which includes
two layers of silicon pixels and four outer layers of silicon
strips. Only a single octant of the VXD was installed during
the 2018 operations [15]. The main tracking device (CDC)
is a large helium-based small-cell drift chamber. The
electromagnetic calorimeter (ECL) consists of a barrel
and two end caps made of CsI(Tl) crystals. The z axis
of the laboratory frame is along the detector solenoidal axis
in the direction of the electron beam. “Longitudinal” and
“transverse” are defined with respect to this direction,
unless otherwise specified.

The invisible Z’ signature is a peak in the distribution of
the invariant mass of the system recoiling against a lepton
pair. “Recoil” quantities such as mass and momentum refer
to this system. They coincide with Z’ properties in the case
of signal events, and typically correspond to undetected SM
particles in the case of background events. The analysis
uses events with exactly two tracks, identified as pu or ey,

141801-4


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.141801&domain=pdf&date_stamp=2020-04-06
https://doi.org/10.1103/PhysRevLett.124.141801
https://doi.org/10.1103/PhysRevLett.124.141801
https://doi.org/10.1103/PhysRevLett.124.141801
https://doi.org/10.1103/PhysRevLett.124.141801
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

PHYSICAL REVIEW LETTERS 124, 141801 (2020)

and minimal other activity in the ECL. The standard Z’
selection is optimized using simulated events prior to
examining data; the same criteria, aside from an electron
in the final state, are used for the LFV Z’ search. The
dominant backgrounds are SM final states with missing
energy and two tracks identified as leptons. These are
radiative muon pairs [e"e™ — u*u"y(y)] with one or more
photons that are not detected due to inefficiency or
acceptance, e"e” — 7777 (y),and eTe” — eTe putu~ with
electrons outside the acceptance. Control samples are used
to check background rates predicted by simulation and to
infer correction factors and related uncertainties. Upper
limits on the standard Z’ cross section are computed with a
counting technique in windows of the recoil mass distribu-
tion. For the LFV Z’ model-independent search, upper limits
are interpreted in terms of signal efficiency times cross
section. Details of each of these steps are described below.

Signal events are generated with MadGraph5 [16] for
standard Z' masses ranging from 0.5 to 8 GeV/c? in steps
of 0.5 GeV/c?. The following background sources are
generated using the specified generators: ete™ — utu(y)
(KKMC [17]); ete™ — ntn~ (y) (PHOKHARA [18]); ete™ —
ete(y) (BabaYaga@NLO [19]); ete™ — 7777 (y) (KKMC
[17] with TAUOLA [20]); ete™ — eTe u ™y ;and eTe™ —
ete~ete™ (AAFH [21]). The detector geometry and the
interactions of the final state particles with the material are
simulated using Geant4 [22] and the Belle II Analysis
Software Framework [23].

The standard Z' search uses the CDC two-track trigger,
which selects events with at least two tracks with an azimuthal
opening angle larger than 90°. The LFV Z’ search uses the
ECL trigger, which selects events with total energy in the
barrel and part of the end cap above 1 GeV. Both triggers reject
events that are consistent with being Bhabha scatterings.

To reject spurious tracks and beam induced background,
“good” tracks are required to have transverse and longi-
tudinal projections of the distance of closest approach with
respect to the interaction point smaller than 0.5 and 2.0 cm,
respectively. Photons are classified as ECL clusters with
energy greater than 100 MeV, which are not associated with
tracks. Quantities are defined in the laboratory frame unless
specified otherwise. Events are required to pass the
following selection criteria.

(1) Exactly two oppositely charged good tracks, with
polar angles in a restricted barrel ECL acceptance 0 €
[37,120]° and with azimuthal opening angle > 90°, to
match the CDC trigger requirement.

(2) Recoil momentum pointing into the ECL barrel
acceptance 0 € [32,125]°, to exclude inefficient regions
where photons from radiative backgrounds can escape
undetected. This selection is applied only for recoil masses
below 3 GeV/c?; missed radiative photons are unlikely to
produce higher masses.

(3) An ECL-based particle identification (PID) selection:
0.15 < E<04GeV and E/pc <04 for muons;

0.8 < E/pc < 1.2 and E > 1.5 GeV for electrons, where
E is the energy of the ECL cluster associated to a track of
momentum p.

(4) No photons within a 15° cone around the recoil
momentum direction in the c.m. frame, to suppress radi-
ative lepton pair backgrounds.

(5) Total photon energy less than 0.4 GeV and no z°
candidates (pairs of photons with invariant masses within
10 MeV/c? of the nominal z° value).

After this selection, the background for recoil masses
below 7 GeV/c? is dominated by e*e™ — 777 (y) events
with 7 — u, or ¢ — 7 where the pion is misidentified as
a muon.

In subsequent steps of the analysis, events are grouped
into windows of recoil mass. The width of these windows is
+20, where ¢ is the recoil mass resolution. It is obtained by
fitting each Z’ recoil mass distribution with a sum of a Crystal
Ball (CB) [24-26] and a Gaussian function with coincident
peaks. The resolution is computed as the sum in quadrature
of the CB and Gaussian widths weighted according to their
contributions. The choice of +2¢ maximizes a figure of
merit (FOM) [27] over the full spectrum. Mass window
widths vary from 1150 MeV/c> at M, = 0.5 GeV/c*to a
minimum of 51 MeV/c? at M, = 6.9 GeV/c?. There are
in total 69 mass windows below 8 GeV/c?.

Studies with radiative muon pair events (upy sample)
indicate that the recoil mass widths for data and simulation
are consistent. No systematic uncertainty is assigned.

A final selection, denoted as “z suppression,” exploits the
kinematics of the Z’' production, which occurs radiatively
from a final state muon, to further suppress 77z~ events in
which the missing momentum arises from neutrinos from
both 7 decays. The variables, defined in the c.m. frame, are
the transverse recoil momentum with respect to the lepton

with the higher momentum pLI™, with respect to the

lower momentum pz;’clmm, and the transverse momentum of
T ,Imax

the dilepton pair (p},, or p},). Figure 1 shows pre
pLImIn for a standard Z' mass of 3 GeV//¢? and for the total
simulated background in the corresponding recoil mass
window.

For the standard Z’ search, a linear cut is imposed in the

T ,Imax T, Imin . . T
rc —Pree  plane and a simultaneous selection p,, >

pd, where the cut values are determined using an optimi-
zation procedure that numerically maximizes the FOM in
each recoil mass window. pl, is typically 1.5-2.0 GeV/c
and is effective in suppressing the remaining pp~(y) and

et e~y u~ backgrounds. For masses higher than 7 GeV/¢?,

signal and background overlap in the pl™™_pTlmin hlane

and effective separation lines are not found. The same values
are used for the LFV Z’ search.

Trigger, tracking, and particle identification efficiencies
are studied on control samples. The performance of the
CDC two-track trigger is studied on data samples, mostly
radiative Bhabha scattering events, selected by means of

Versus
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B Background

Belle 11 2018 - Simulation
3.0 - mmm Signal: My = 3 GeV/c?

[GeV/c]

T, Imax
rec

p

prlmin [GeV/c]

FIG. 1. pLlm> yg pllmin gistributions after the optimal Phu
selection for M, = 3 GeV/c? signal (red) and for background
(blue). pLimax (pLIminy is the transverse recoil momentum with
respect to the direction of the muon with maximum (minimum)
momentum in the c.m. frame. The optimal separation line is
superimposed.

the ECL trigger. The efficiency is (79 £+ 5)% when both
tracks are within the acceptance of selection 1; the
uncertainty is systematic and is due to kinematic depend-
encies. The performance of the ECL trigger is studied using
ete” — utu"y events with E, > 1 GeV that are selected
with the CDC two-track trigger. The efficiency is found to
be uniformly (96 4 1)% in the ECL barrel region.

The tracking efficiency for data is compared to simu-
lation using radiative Bhabha and e*e™ — 777~ events.
Differences are found to be 10% for two-track final states.
A 0.90 correction factor is applied to simulation, with a 4%
systematic uncertainty due to kinematic dependencies.

The PID efficiency for data is compared to simulation
using samples of four-lepton events from two-photon
mediated processes. Discrepancies at the level of 2% per
track are found, resulting in a systematic uncertainty of 4%.

The selection criteria before the = suppression are studied
using signal-free control samples in data and simulation.
We use the upy sample defined above and an analogously
defined euy sample to check the low recoil mass region.
Kinematic quantities are computed without taking into
account the presence of the photon. We also select pu and
ep samples that satisfy requirements 1-5, but which fail the

Timax_p,Limin - requirement. These studies indicate that,
factoring out the 0.90 tracking efficiency correction, the
efficiency before the 7 suppression is 25% lower for "y~
events in data than in simulation, but agrees for e*uT
events. A variety of studies failed to uncover the source of
this discrepancy, which is consistently found to be inde-
pendent of all checked quantities, including the recoil mass.
The background predictions from simulation and the signal
efficiency are thus corrected with a scaling factor of 0.75
for uTpu~ events. After the inclusion of these corrections,
the background level before the 7 suppression selection

agrees with the simulation in both samples within a 2%
statistical uncertainty [28], which is used as a systematic
contribution. This is a strong constraint for the standard Z’
signal efficiency as well, as the topology of background and
signal events (a pair of muons and missing energy) is
identical for signal and background and the discrepancy in
the measured yield is found not to depend on kinematic
quantities (see above). Nevertheless, we conservatively
assign a systematic uncertainty of 12.5% on the correction
factor to the signal efficiency for the dimuon sample, half
the size of the observed discrepancy.

To study the 7 suppression, we use an ee~ sample
selected using the same analysis criteria, but with both
tracks satisfying the electron criteria in selection 3. The
resulting sample includes eTe™y, eTeeTe” and 7T
events where both leptons decay to electrons. The latter
has the same kinematic features of the most relevant
background source to both searches. Agreement between
data and simulation is found after the = suppression, within
a 22% statistical uncertainty. This is taken as a systematic
uncertainty on the background; no systematic uncertainty
due to this effect is considered for the signal, as the
selection has a high efficiency (around 50%, slightly
depending on the Z' mass), and the distributions on which
it is based are well reproduced in simulation.

After the corrections for the two-track trigger efficiency
and for the data or simulation discrepancy in ™y~ events,
signal efficiencies are found to range between 2.6% and
4.9% for Z' masses below 7 GeV/c?. Signal efficiencies
are interpolated from the generated Z’' masses to the center
of each recoil mass window. An additional binning scheme
is introduced with a shift of a half bin, to cover hypothetical
signals located at the border of two contiguous bins, where
the signal efficiency is reduced. Systematic uncertainties
are summarized in Table I.

The final recoil mass spectrum of the ytu~ sample is
shown in Fig. 2, together with the expected background.
We look for the presence of possible local excesses by
calculating for each recoil mass window the probability to
obtain a yield greater or equal to that obtained in data given
the predicted background, including statistical and system-
atic uncertainties. No anomalies are observed, with all

TABLE 1. Relative systematic uncertainties affecting the p*pu~
and euT analyses.

Source utu eyt
Trigger efficiency 6% 1%
Tracking efficiency 4% 4%
PID 4% 4%
Luminosity 0.7% 0.7%
7 suppression (background) 22% 22%
Background before z suppression 2% 2%
Discrepancy in up yield (signal) 12.5%
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FIG. 2. Recoil mass spectrum of the y™u~ sample. Simulated
samples (histograms) are rescaled for luminosity, trigger (0.79),
and tracking (0.90) efficiencies, and the correction factor (0.75,
see text). Histogram bin widths indicate the recoil mass windows.

results below 3¢ local significance in both the normal and
shifted-binning options [28]. A Bayesian procedure [29] is
used to compute 90% credibility level (C.L.) upper limits
on the standard Z’ cross section. We assume flat priors for
all positive values of the cross section, while Poissonian
likelihoods are assumed for the number of observed and
simulated events. Gaussian smearing is used to model the
systematic uncertainties. Results are cross-checked with
log-flat priors and with a frequentist procedure based on
the Feldman-Cousins approach [30] and are found to be
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FIG.3. 90% C.L. upper limits on coupling constant ¢'. Dark blue

filled areas show the exclusion regions for ¢ at 90% C.L.,
assuming the L, — L, predicted BF for Z' — invisible; light blue
areas are for BF(Z' — invisible) = 1. The solid and dashed lines
are the expected sensitivities in the two hypotheses. The red band
shows the region that could explain the muon anomalous magnetic
moment (§—2),+26[1,5]. The stepat M, = 2m,, forthe L, — L,
exclusion region reflects the change in BF(Z' — vp).
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FIG. 4. Recoil mass spectrum of the e*u¥ sample. Simulated
samples (histograms) are rescaled for luminosity, trigger (0.79),
and tracking (0.90) efficiencies. Histogram bin widths indicate
the recoil mass windows.

compatible in both cases [28]. Cross section results are
translated into 90% C.L. upper limits on the coupling
constant ¢’. These are shown in Fig. 3, where only values
¢ < 1 are displayed. The observed upper limits for models
with BF(Z' — invisible) < 1 can be obtained by scaling

the light blue curve as 1/v/BF.

The final recoil mass spectrum of the e*uT sample is
shown in Fig. 4, together with background simulations.
Again, no anomalies are observed above 3¢ local signifi-
cance [28]. Model-independent 90% C.L. upper limits on
the LFV Z’ efficiency times cross section are computed
using the Bayesian procedure described above and cross-
checked with a frequentist Feldman-Cousins procedure
(Fig. 5). Additional plots and numerical results can be
found in the Supplemental Material [28].
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FIG.5. 90% C.L. upper limits on efficiency times cross section
€ x olete™ — e*uTinvisible]. The dashed line is the expected
sensitivity.
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In summary, we have searched for an invisibly decaying
Z' boson in the process eTe~™ — uTu~Z' and for a LFV Z'
in the process ete™ — etuTZ', using 276 pb~! of data
collected by Belle II at SuperKEKB in 2018. We find no
significant excess and set for the first time 90% C.L. upper
limits on the coupling constant ¢’ in the range 5 x 1072 to 1
for the former case and to the efficiency times cross section
around 10 fb for the latter. The full Belle II dataset, with
better muon identification, a deeper knowledge of the
detector, and the use of multivariate analysis techniques
should be sensitive to the 107°~10~* ¢ region, where the
(9 —2), band currently lies.
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