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We give a geometric interpretation of color-kinematics duality between tree-level scattering amplitudes
of gauge and gravity theories. Using their representation as intersection numbers we show how to obtain
Bern-Carrasco-Johansson numerators in a constructive way as residues around boundaries of the moduli
space. In this language the kinematic Jacobi identity between each triple of numerators is a residue theorem
in disguise.
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Introduction.—Computation of scattering amplitudes in
gravitational theories has traditionally posed a formidable
task—even for tree-level processes—due to a proliferation
of Feynman diagrams involved. This fact has changed with
the introduction of color-kinematics duality [1,2] by Bern,
Carrasco, and Johansson (BCJ), which provides a shortcut
in computing gravitational observables by extracting the
relevant information from gauge theory. It has since found
applications in a spectrum of topics ranging from the study
of ultraviolet properties of gravity [3–8], through the
construction of classical solutions [9–16], to gravita-
tional-wave physics [17–22].
Working at tree level, let us make the statement of color-

kinematics duality more precise. Scattering amplitudes of n
gauge bosons can be expressed as

Agauge
n ¼

X
Γ

nΓcΓQ
e∈Γp

2
e
; ð1Þ

where the sum goes over all ð2n − 5Þ!! trivalent trees Γwith
propagators p2

e associated to each internal edge e of Γ. Here
cΓ denotes the color structure attached to each diagram,
while nΓ is the remaining part of the numerator involving
kinematic information such as contractions of momenta
and polarization vectors.
Let us isolate triples of terms in Eq. (1) with graphs

denoted by ðΓs;Γt;ΓuÞ differing only by a single subdia-
gram, as in Fig. 1: Color structures associated to such
triples satisfy the Lie algebra Jacobi identity, cΓs

þ cΓt
þ

cΓu
¼ 0. Suppose that for every ðΓs;Γt;ΓuÞ we enforce a

similar condition on the kinematic numerators,

nΓs
þ nΓt

þ nΓu
¼ 0; ð2Þ

known as the kinematic Jacobi identity. Since the numer-
ators coming from Feynman diagram expansion do not
naturally satisfy Eq. (2), it is typically a difficult task to
bring them into such a form by reshuffling terms in Eq. (1).
Assuming this can be done, BCJ proposed [1] that
scattering amplitudes in gravity theory can be written,
up to normalization, as

Agravity
n ¼

X
Γ

nΓñΓQ
e∈Γp

2
e
; ð3Þ

where nΓ’s and ñΓ’s are two (possibly distinct) sets of
Jacobi-satisfying numerators. This statement is now proven
[23] and can be extended to loop level [1,2,24–35], gauge
and gravity theories with different supersymmetry and
matter content [36–44], as well as various other theories
[45–53]. Kinematic algebras leading to Eq. (2) have been
investigated in Refs. [54–56]. For a comprehensive review
of color-kinematics duality see Ref. [57].
At this stage one can ask if the kinematic Jacobi identity

Eq. (2) has a geometric interpretation, and whether there
exists a representation of scattering amplitudes that man-
ifests this fact. These questions turn out to have a common
answer, whose elucidation is the goal of this Letter.
It has recently emerged that a natural framework for

addressing such problems is that of intersection theory [58].
It was previously used to provide a geometric interpretation

FIG. 1. Triples ðΓs;Γt;ΓuÞ of diagrams differing by a subdia-
gram with four external legs.
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of Kawai-Lewellen-Tye (KLT) [59] relations between
string- and field-theory amplitudes in terms of intersections
of associahedra [60–62]; write down higher-loop mono-
dromy and BCJ [1,63] relations for loop integrands [64];
understand precise conditions under which the low-energy
limit of string-theory amplitudes localizes on scattering
equations [58,62]; as well as give a new perspective on
differential equations, dimensional recurrence relations,
and integration-by-parts identities for multiloop Feynman
integrals [65–68], among other applications [69–75].
At the same time this line of research unraveled connec-
tions between scattering amplitudes and more formal topics
including Morse theory [58], Euler characteristics [62,65],
Landau–Ginzburg models [68], and Yang–Baxter rela-
tions [62].
The central role in this theory is played by the so-called

intersection numbers, which provide a geometric repre-
sentation of tree-level amplitudes in various quantum field
theories [58,62]. Selecting a theory amounts to specifying
two differential forms, φ− and φþ, on the moduli space of
Riemann spheres with n punctures, M0;n. In the low-
energy limit intersection numbers are computed by [62]

X
Γ

ResvΓðφ−ÞResvΓðφþÞQ
e∈Γp

2
e

: ð4Þ

Here the sum is of exactly the same form as in Eqs. (1)
and (3), and the role of numerators—both color and
kinematic ones—is played by the residues around maxi-
mal-codimension boundaries of the moduli space, vΓ,
which are in one-to-one map with trivalent diagrams Γ.
We will prove that the numerators in Eq. (4) always

satisfy the kinematic Jacobi identity Eq. (2) as a conse-
quence of a residue theorem, thus providing a manifestly
color-kinematics dual representation of amplitudes.
In this language the problem of finding numerators for

various theories translates to different choices of φ�. After
reviewing a known catalog of such forms for gauge and
gravity theories we give explicit examples of computing
Jacobi-satisfying numerators.
Boundaries and residues.—Let us briefly review the

factorization structure of the moduli space M0;n provided
by its compactification [76]. When a subset R of punctures
collides on the Riemann sphere, the surface should be
thought of as “bubbling” into two new spheres, where an
emergent puncture I separates the set R from the comple-
mentary set L (with sizes 2 ≤ jLj, jRj ≤ n − 2), see Fig. 2.
It is a codimension-one component of the boundary divisor
∂M0;n. We can make this procedure concrete on the level
of differential forms. Take φ to be a top (degree n − 3)
holomorphic form on M0;n, i.e., proportional to the
SLð2;CÞ-covariant measure

dμn ¼ ðzp − zqÞðzq − zrÞðzp − zrÞ ⋀
n

i¼1
i≠p;q;r

dzi; ð5Þ

where ðzp; zq; zrÞ denote the positions of three arbitrary
punctures fixed by the action of SLð2;CÞ. For massless
scattering we must require that φ is invariant under
SLð2;CÞ transformations zi ↦ ðAzi þ BÞ=ðCzi þDÞ with
AD − BC ¼ 1 for all zi’s.
A standard way of modeling the above factorization is to

embed the original sphere CP1 as a conic in CP2 with a
new parameter ϵ, such that it factors into CP1 × CP1 as
ϵ → 0, see, e.g., Ref. [77]. In coordinates, we perform the
change of variables

zi ¼
�
ϵ=xi for i ∈ L;

yi=ϵ for i ∈ R;
ð6Þ

where xi’s and yi’s are positions of punctures on the new
spheres with exactly two xi’s and two yi’s fixed. Since the
boundary lies along fϵ2 ¼ 0g we can simply take

Resϵ2¼0ðφÞ ¼ φL ∧ φR; ð7Þ

where φLðxiÞ and φRðyiÞ are now top (degree jLj − 2 and
jRj − 2) holomorphic forms on the moduli spacesM0;jLjþ1

andM0;jRjþ1 of the left and right sphere, respectively. From
the perspective of the particles on the left sphere the
emergent puncture is at xI ¼ 0, while from the right sphere
it is at yI ¼ 0. In the special case of two punctures
colliding, i.e., R ¼ fzi; zjg the residue becomes simply
Reszi¼zjðφÞ ¼ φL up to orientation. Intuitively, one might
think of Eq. (7) as extracting a singular part in the operator
product expansion between operators from the set R being
replaced by I (or those from L being replaced by I from the
other sphere’s perspective).
Repeating this procedure exactly n − 3 times one obtains

maximal-codimension components (vertices) vΓ of ∂M0;n,
which are in one-to-one map with trivalent graphs Γ, as all
punctures are fixed by the action of SLð2;CÞ, see, e.g.,

FIG. 2. Deligne-Mumford compactification of a codimension-
one component of ∂M0;n.

FIG. 3. Example of the map between maximal-codimension
components of ∂M0;n and trivalent trees.
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Fig. 3. The corresponding numerator nΓ ¼ ResvΓðφÞ is a
function computed by applying Eq. (7) consecutively
n − 3 times.
There exists an alternative way of computing ResvΓðφÞ,

based on the dihedral extension of M0;n employing
cross-ratio coordinates suited for each vΓ [78], which is
particularly useful for planar amplitudes, see, e.g.,
Refs. [62,69,79].
Kinematic Jacobi identity.—Let us consider the stage at

which bubbling already happened n − 4 times, i.e., when
we are only one residue away from a trivalent factorization.
It means there is exactly one sphere with four punctures, see
Fig. 4. This leaves us with a one-form φM on the moduli
space of the “middle” sphere, which was computed as an
(n − 4)-fold residue of the original form φ. Let us call the
unfixed puncture z and the fixed ones ðzs; zt; zuÞ, such that
z colliding with zi leads to a trivalent graph Γi, as in
Figure 1. By definition of the numerators entering Eq. (4)
we have

nΓs
¼ Resz¼zsðφMÞ; nΓt

¼ Resz¼ztðφMÞ;
nΓu

¼ Resz¼zuðφMÞ; ð8Þ

which are residues around the boundaries of the remaining
moduli space, see Fig. 5. Since there are no other poles the
residue theorem reads

nΓs
þ nΓt

þ nΓu
¼ 0; ð9Þ

which is precisely the kinematic Jacobi identity Eq. (2).
Given that we could have started with any configuration in
Fig. 4, this identity is satisfied for all possible triples
ðΓs;Γt;ΓuÞ. (The identity Eq. (9) means that for each triple

only two out of three numerators are Z independent. One
can ask how these relations combine for subdiagrams with
m ≥ 4 external legs by considering the “middle” sphere in
Fig. 4 to have m points. The results of Ref. [80] show
that all residue theorems must reduce the number of Z-
independent numerators down to dimHm−3ðM0;m;ZÞ ¼
ðm − 2Þ! from the total of ð2m − 5Þ!!.)
Building blocks.—At this stage we have demonstrated

that any rational form φ on M0;n leads to Jacobi-satisfying
numerators, however, it does not yet mean that the resulting
Eq. (4) is a scattering amplitude. We need to learn how to
pick differential forms of physical relevance, which is a
domain of intersection theory.
The first step is to realize that such forms should be really

treated as elements of cohomology (equivalence) classes
labeled by a � sign,

φ� ∼ φ� þ ðd� dW ∧Þξ ð10Þ

for any rational (n − 4)-form ξ. Here W is a potential
given by

W ¼ 1

Λ2

X
i<j

2pi · pj logðzi − zjÞ; ð11Þ

with a mass scale Λ. This is precisely how φ� “know”’
about physics through the kinematic invariants pi · pj. To
distinguish them from ordinary differential forms we call
φ� twisted forms. Their space is ðn − 3Þ!-dimensional [81],
in contrast with the space of ordinary forms, which is
ðn − 2Þ!-dimensional [80]. In order to make the statements
below nontrivial we typically impose that twisted forms
have no kinematic poles, which in turn implies that the
numerators nΓ are local.
One can construct a bilinear of φ− and φþ called their

intersection number, hφ−jφþidW , given by integrating the
two forms over the moduli space. While such invariants
have been known in mathematics for decades [82–84], only
recently they were identified as representations of tree-level
scattering amplitudes in various massive and massless
quantum field theories in arbitrary space-time dimension
[58], see Ref. [62] for a comprehensive introduction. We
focus on massless external states, p2

i ¼ 0, from now on.
There exists a catalog of twisted forms, which can be

mixed and matched to compute different amplitudes [62].
For theories with color degrees of freedom Tci we have

φcolor
� ¼ dμn

�
TrðTc1Tc2 � � �TcnÞ

ðz1 − z2Þðz2 − z3Þ � � � ðzn − z1Þ
þ perm:

�
;

ð12Þ

where the symmetrization involves ðn − 1Þ! cyclic permu-
tations (the definition is the same for both �). By con-
struction the associated numerator is precisely the color

FIG. 4. The middle sphere with four punctures.

FIG. 5. Residue theorem on the moduli space of the middle
sphere.
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structure of a given diagram, i.e., ResvΓðφcolor
� Þ ¼ cΓ, as in

Eq. (1). For theories with polarization vectors εμi we can use

φgauge
� ¼ dμn

Z Yn
i¼1

dθidθ̃i
θkθl

zk − zl
exp

X
i≠j

Φij; ð13Þ

(the choice of k and l is arbitrary) with

Φij ¼ −
θiθjpi · pj þ θ̃iθ̃jεi · εj þ 2ðθi − θjÞθ̃iεi · pj

zi − zj ∓ Λ2θiθj
:

ð14Þ

For conciseness we wrote it in terms of Grassmann
integrals over θi and θ̃i, which can be expanded as a
degree-bðn − 2Þ=2c polynomial in Λ2 of Pfaffians [see,
e.g., Eq. (4.8) in Ref. [62] ]. Similarly, we have the forms

φbosonic
� ¼ dμnð�ΛÞn−2

Z Yn
i¼1

dθidθ̃i exp
X
i≠j

Ξij; ð15Þ

where

Ξij ¼ � 1

Λ
2θjθ̃jpi · εj
zi − zj

þ θiθ̃iθjθ̃jεi · εj
ðzi − zjÞ2

: ð16Þ

Upon the identificationΛ2 ¼ 1=α0, Eqs. (13) and (15) are in
fact the same objects as those in super- and bosonic string
perturbation theory, respectively [85], but—surprisingly—
now appear in a purely field-theoretic context.
A partial list of theories whose amplitudes are known to

have an interpretation as intersection numbers is given in
Table I [62]. Even though Eq. (13) depends on Λ, this
dependence drops out from the resulting amplitudes in the
first three cases (it is not true for the last two) [62,86]. Since
amplitudes are written as bilinears in this representation,
KLT relations between the above theories become simply a
consequence of linear algebra. The total differential 0 ∼
ðd� dW ∧Þφcolor

�;n−1 implies the fundamental BCJ relation
[1], as an extension of the arguments in Ref. [87]. Twisted
forms for states lying in the low-energy spectrum of string
theory, such as those involving fermions or mixed Einstein–
Yang-Mills interactions, can be readily written down using

the techniques discussed in Ref. [62], but we will not
pursue it here.
Scattering amplitudes in such a representation can be

computed exactly using recursion relations [62], however
the resulting numerators do not come in a Jacobi-satisfying
way. Instead, the localization formula Eq. (4) is known to
arise as the Λ0 order in the low-energy (Λ → ∞) expansion
of intersection numbers [62],

hφ−jφþidW ¼
X
Γ

ResvΓðφ−ÞResvΓðφþÞQ
e∈Γp

2
e

þOðΛ−2Þ; ð17Þ

when φ� are independent of Λ. (In the massless limit
(Λ → 0) intersection numbers have another localization
formula on the so-called scattering equations, dW ¼ 0,
which at the leading order Λ0 gives the Cachazo-He-Yuan
(CHY) [88,90] formulation of massless amplitudes, see
[58,62] for details. Since Yang-Mills and Einstein gravity
amplitudes are independent of Λ to begin with, this limit is
exact. Subleading corrections OðΛ2p≥2Þ are given by
higher residue pairings [68,91].) However, with the excep-
tion of Eq. (12), twisted forms given above are polynomials
in Λ2, which leads to mixing of different orders in Eq. (17).
To consistently extract the leading order Λ0 with Eq. (17)
one needs to first remove the Λ dependence from twisted
forms by a repeated use of Eq. (10). Given that Yang-Mills
and Einstein gravity amplitudes are independent of Λ, once
this is done the terms of order OðΛ−2Þ are not present and
the numerators are exact.
Examples.—We proceed with two illustrative examples.

In order to contain expressions within the margins of this
Letter we focus on the case n ¼ 4, where amplitudes with
color degrees of freedom take the form

A4 ¼
nscs
s

þ ntct
t

þ nucu
u

; ð18Þ

with s ¼ ðp1 þ p2Þ2, t ¼ ðp2 þ p3Þ2, u ¼ ðp1 þ p3Þ2 and
a single triple. Fixing the punctures ðz1; z2; z3Þ leaves us
with a single coordinate z4 on M0;4. Evaluating color
numerators using Eq. (12) for n ¼ 4 amounts to computing
the residues:

cs ¼ Resz4¼z3ðφcolor
−;4 Þ ¼ fc1c2bfbc3c4 ;

ct ¼ Resz4¼z1ðφcolor
−;4 Þ ¼ fc2c3bfbc1c4 ;

cu ¼ Resz4¼z2ðφcolor
−;4 Þ ¼ fc3c1bfbc2c4 ; ð19Þ

with the convention fabc ¼ TrðTa½Tb; Tc�Þ. In this case the
residue theorem implies the usual Jacobi identity
cs þ ct þ cu ¼ 0.
Gauge theory.—Let us consider kinematic numerators in

Yang-Mills theory. Choosing ðk;lÞ ¼ ð1; 2Þ for n ¼ 4 the
twisted form Eq. (13) becomes

TABLE I. List of theories whose amplitudes hφ−jφþidW are
computed using twisted forms φ�.

φ− φþ Theory

φcolor
− φcolorþ Bi-adjoint scalar [55,88]

φcolor
− φgauge

þ Yang-Mills
φgauge
− φgauge

þ Einstein gravity
φcolor
− φbosonicþ YMþ ðDFÞ2 [42,89]

φgauge
− φbosonicþ Weyl-Einstein gravity [42,89]
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φgauge
þ ¼ z13z23

�
PfΨ½12� − 4Λ2

ε1 · ε2ε3 · ε4
z12z234

�
dz4: ð20Þ

Here Ψ½12� is the matrix known from the CHY formalism
[90] in the conventions of Ref. [62], with columns and rows
1,2 removed. In order to fix the issue with Λ nonhomo-
geneity we use Eq. (10) with

ξ ¼ 4Λ2ε1 · ε2ε3 · ε4
z13z24
z12z34

; ð21Þ

obtained by integrating minus the final term in Eq. (20).
Adding ðdþ dW ∧Þξ to Eq. (20) gives us a form coho-
mologous to Eq (20), but independent of Λ:

φgauge
þ;4 ¼ z13z23PfΨ½12�dz4

þ 4ε1 · ε2ε3 · ε4

�
t
z41

þ u
z42

þ s
z43

�
z13z24
z12z34

dz4:

ð22Þ

Therefore the leading order in Eq. (17) computes the full
Yang-Mills amplitude. Using this representation we find

ns ¼ Resz4¼z3ðφgauge
þ;4 Þ

¼ 8ε1;με2;νε3;ρε4;τ½p1 · p2ðημρηντ − ημτηνρÞ
− p2 · p3η

μνηρτ þ ðpρ
1p

τ
2 − pρ

2p
τ
1Þημν þ pν

1p
τ
3η

μρ

− pν
1p

ρ
4η

μτ − pμ
2p

τ
3η

νρ þ pμ
2p

ρ
4η

ντ þ ðpμ
3p

ν
4 − pμ

4p
ν
3Þηρτ�;
ð23Þ

nt ¼ Resz4¼z1ðφgauge
þ;4 Þ

¼ 8ε1;με2;νε3;ρε4;τ½p1 · p2η
μτηνρ þ p2 · p3η

μνηρτ

þ pρ
2p

τ
1η

μν − pν
3p

τ
1η

μρ þ ðpν
1p

ρ
4 − pν

4p
ρ
1Þημτ

þ ðpμ
2p

τ
3 − pμ

3p
τ
2Þηνρ − pμ

4p
ρ
2η

ντ þ pμ
4p

ν
3η

ρτ�; ð24Þ

nu ¼ Resz4¼z2ðφgauge
þ;4 Þ

¼ 8ε1;με2;νε3;ρε4;τ½−p1 · p2η
μρηντ − pρ

1p
τ
2η

μν

þ ðpν
3p

τ
1 − pν

1p
τ
3Þημρ þ pν

4p
ρ
1η

μτ þ pμ
3p

τ
2η

νρ

þ ðpμ
4p

ρ
2 − pμ

2p
ρ
4Þηντ − pμ

3p
ν
4η

ρτ�: ð25Þ

One can check that ns þ nt þ nu ¼ 0 and the resulting
amplitude [Eq. (18)] is gauge invariant. Scattering ampli-
tude of four gravitons is obtained by replacing cΓ → ñΓ
(with ε̃i instead of εi) followed by a symmetrization of

polarization tensors, εμνi ¼ εðμi ε̃
νÞ
i .

Conclusion.—In this Letter we introduced a representa-
tion of tree-level scattering amplitudes that manifests color-
kinematics duality. The problem of finding theories with
Jacobi-satisfying numerators translates to a classification of

twisted forms, which motivates further extension of their
available catalog.
The amplitudes computed with Eq. (13) have a remark-

able property of being Λ independent, as expected for
massless theories, despite the fact φgauge

� is not. On the other
hand, it was previously shown that intersection numbers of
logarithmic forms are independent of Λ [58,84]. Thus, one
might suspect that once φgauge

� is brought into a Λ-
independent form (perhaps using the algorithms of
[29,86,92–97]) it would become logarithmic, as is the case
for the examples [Eq. (22)]. (Although any twisted form
can be written as a logarithmic form [98], it is a nontrivial
question whether such a form is independent of Λ and has
no kinematic poles. This is true in pure spinor superspace
[86,92].) The answer has to be proportional to PfΨ½kl� plus
corrections polynomial in ∂W=∂zi since the latter ought to
vanish after taking the Λ → 0 limit which, by Eq. (10),
imposes scattering equations dW ¼ 0, cf. [94,95]. Finding
a closed-form expression for all n remains an open
problem, which is of both theoretical and practical
importance.
Generalization to higher-loop order consists of two

separate steps. The first is writing down the analogue of
Eq. (4) in terms of ð3gþ n − 3Þ-fold residues on genus-g
moduli spaces, which necessarily satisfy the kinematic
Jacobi identity by the same arguments as for g ¼ 0, thus
proving that there is no topological obstruction to imposing
Eq. (2) at any loop order. The second step is finding
appropriate twisted forms generalizing Eq. (13) that give
rise to loop integrands of gauge and gravity theories. The
latter problem needs to be considered in light of the fact that
projectedness of supermoduli spaces [which was implicitly
assumed in deriving Eq. (13)] breaks down at genus
five [99].
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