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Physical systems made of many interacting quantum particles can often be described by Euler
hydrodynamic equations in the limit of long wavelengths and low frequencies. Recently such a classical
hydrodynamic framework, now dubbed generalized hydrodynamics (GHD), was found for quantum
integrable models in one spatial dimension. Despite its great predictive power, GHD, like any Euler
hydrodynamic equation, misses important quantum effects, such as quantum fluctuations leading to
nonzero equal-time correlations between fluid cells at different positions. Focusing on the one-dimensional
gas of bosons with delta repulsion, and on states of zero entropy, for which quantum fluctuations are larger,
we reconstruct such quantum effects by quantizing GHD. The resulting theory of quantum GHD can be
viewed as a multicomponent Luttinger liquid theory, with a small set of effective parameters that are fixed
by the thermodynamic Bethe ansatz. It describes quantum fluctuations of truly nonequilibrium systems
where conventional Luttinger liquid theory fails.
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The behavior of fluids at very low temperatures is
usually peculiar, as the quantum nature of their constituents
dominates over thermal fluctuations. To describe collective
quantum effects, it is customary to start from classical
hydrodynamic equations, and to quantize them. This path
was taken by Landau in 1941 [1] in his development of the
theory of superfluid helium [2,3]. Since then, similar
approaches have been developed for various other quantum
liquids [4,5], including, for instance, Bose-Einstein con-
densates where quantum fluctuations are captured by the
Bogoliubov theory [6–8], quantum Hall liquids [9–11], or
one-dimensional (1D) quantum fluids described by
Luttinger liquid theory [12–14].
The purpose of this Letter is to apply a similar program to

the classical hydrodynamics of one-dimensional quantum
integrable models introduced in 2016 [15,16], now dubbed
generalized hydrodynamics (GHD). At equilibrium, the
Luttinger liquid theory—which is the quantized hydro-
dynamic theory of 1D fluids [17] with few conserved
quantities such as charge, magnetization, energy, momen-
tum—is enough to capture quantum fluctuations of 1D
gapless integrable models [12–14]. However, when dealing
with true out-of-equilibrium situations, like the quantum
Newton’s cradle setup [18]—whose hydrodynamics
description must keep track of all higher conservations laws
[19], and is provided by GHD [20]—quantum fluctuations
must be given by a more general quantum hydrodynamics
theory, obtainable by quantizing GHD. Here our goal is to
identify that theory.

Our starting point is GHD, which, on the technical side,
relies on the formalism of the thermodynamic Bethe ansatz
[21,22]. Thermodynamically large integrable systems are
described by densities of different species of quasipar-
ticles. For simplicity, in this Letter we formulate our
results in a specific model: the 1D Bose gas with delta
repulsion [23–25]. This model is singled out because of its
experimental relevance—it is routinely used for describing
contemporary cold atom experiments in 1D [26–30]—and
because of its simple thermodynamics involving a single
species of quasiparticles. Our approach can be straight-
forwardly generalized to other integrable systems with a
GHD description [31–60], including, for instance, the
XXZ chain; we defer mathematical formulas for the
general multispecies case to the Supplemental Material
(SM) [61].
At the microscopic level, the 1D Bose gas with delta

repulsion is defined by the Hamiltonian for N bosons
H¼P

N
i¼1½−ðℏ2=2Þ∂2

xi þVðxiÞ�þℏḡ
P

i<jδðxi−xjÞ, where
g ¼ ℏḡ > 0 is the repulsion strength between the bosons and
VðxÞ is an external trapping potential. We set the mass of the
bosons to 1.
GHD is formulated at the Euler scale, where space-time

scales of observations and length scales of external poten-
tials are simultaneously sent to infinity; at the Euler scale
diffusion is absent (but subleading diffusive corrections to
GHD are also known [42–44]). In the 1D Bose gas the
Euler scale is equivalently expressed as the classical limit
[64–66]:
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ℏ → 0; keepingℏN;VðxÞ; ḡ fixed: ð1Þ

For the gas starting at zero temperature, its evolution under
GHD takes a particularly simple form [34]. Indeed, an
initial zero-temperature state has zero entropy and entropy
is conserved by Euler equations such as GHD. (This is
generally true for Euler hydrodynamic equations away
from shocks, and it is known that GHD does not admit
shocks [34,67,68].) Thus the Bose fluid remains locally in a
macrostate with zero entropy at all times. In the Bose gas
with delta repulsion, the presence of higher conservation
laws allows for a large space of macrostates with zero
entropy: the split Fermi seas [69–72]. They can be labeled
by a set of Fermi rapidities fθag1≤a≤2q such that the Fermi
factor nðθÞ—the number of Bethe quasiparticles with
rapidity in ½θ; θ þ dθ� divided by the number of available
states in that interval (see, e.g., Chap. 1 in Ref. [25] for an
introduction to that formalism)—is

nðθÞ ¼
�
1 if θ ∈ ½θ1; θ2� ∪ … ∪ ½θ2q−1; θ2q�
0 otherwise:

ð2Þ

The local macrostate is then assumed to be a function of
position x and of time t. The global state of the system at
time t is best represented by the Fermi contour Γt (see
Fig. 1), which is defined such that the Fermi factor nðx; θÞ
is 1 for all points ðx; θÞ inside the contour, and 0 outside.
For simplicity we restrict to situations where Γt is a
simple closed curve, parametrized by a function
s ↦ ðxtðsÞ; θtðsÞÞ,

Γt ¼ fðxtðsÞ; θtðsÞÞ; s ∈ R=2πZg: ð3Þ

According to GHD, the time evolution of the contour Γt is
given by the classical equation [34]

d
dt

�
xtðsÞ
θtðsÞ

�
¼

�
veffðxtðsÞ; θtðsÞÞ
aeffðxtðsÞ; θtðsÞÞ

�
; ð4aÞ

which expresses the fact that quasiparticles inside the
contour move at an effective velocity veffðx; θÞ and are
accelerated at an effective acceleration aeffðx; θÞ, both of
which depend in general on the local Hamiltonian and
macrostate, hence on the Fermi points at x. Equation (4a) is
complemented by a closed formula for the effective
velocity [15,16,46,73] and acceleration [74],

veff ¼ ð∂θEÞdr=1dr; aeff ¼ −ð∂xEÞdr=1dr; ð4bÞ

where Eðx; θÞ is the bare energy of a quasiparticle with
respect to the local Hamiltonian, 1ðθÞ ¼ 1, and the dressing
of a function fðθÞ in the local macrostate is defined by the
integral equation fdrðθÞ ¼ fðθÞ þ R ðdθ0=2πÞ½dϕðθ − θ0Þ=
dθ�nðθ0Þfdrðθ0Þ. Here ϕðθ − θ0Þ ¼ 2 arctan½ðθ − θ0Þ=ḡ� is
the two-body scattering phase for the delta Bose gas

[23–25]. In the present case, Eðx; θÞ ¼ θ2=2þ VðxÞ, and
the effective acceleration simplifies to give Newton’s
second law [74]:

aeff ¼ −∂xVðxÞ: ð5Þ

Notice that ℏ is completely absent from Eqs. (4a) and (4b),
which is consistent with our claim that zero-entropy GHD
corresponds to the classical limit Eq. (1) in the micro-
scopic model.
Goal of this Letter.—Because it is a classical hydro-

dynamic description, GHD misses certain quantum effects,
such as quantum entanglement or correlations between the
different parts of the fluid at a given time. Such effects
appear as subleading orders in an expansion at small ℏ in
the limit Eq. (1). Here we initiate the development of a
theory of quantum fluctuations around GHD. Analogously
to Bogoliubov theory [6–8], our strategy is to start from
linear sound waves propagating on top of a background
configuration (xtðsÞ; θtðsÞ) which solves the GHD equa-
tion (Fig. 1), and then find a way to quantize those. We
find that the resulting theory takes the form of a time-
dependent, spatially inhomogeneous, multicomponent
Luttinger liquid, which generalizes the effective theory of
(homogeneous, time-independent) split Fermi seas devel-
oped recently by Eliëns and Caux [70]; see also
Refs. [69,71,72]. It also generalizes the theory of inhomo-
geneous Luttinger liquids (see, e.g., Refs. [14,17,64–
66,75,76]) to truly out-of-equilibrium situations, like the
situation depicted in Fig. 2 (see the discussion below).
Sound waves in zero-entropy GHD.—Linearly propa-

gating waves are consequences of the conservation laws of
hydrodynamics. By fluctuation dissipation, they are subject

(a) (b)

FIG. 1. (a) Zero-entropy GHD describes the motion of the
Fermi contour Γt, parametrized as in Eq. (3), which separates the
regions in phase space where the Fermi factor nðx; θÞ is one
(orange) or zero (white) at a given time t. In any small interval
½x; xþ dx� the fluid is in a state called split Fermi sea [69–72]
labeled by Fermi rapidities θ1 < θ2 < … < θ2q; the number of
fluid components q is a piecewise constant function of x and t.
(b) In this Letter the contour Γt is allowed to have quantum
fluctuations around the classical solution to the zero-entropy
GHD equations (4a) and (4b). The quantum fluctuations are
captured by a chiral boson with density δρ̂ðsÞ living along the
contour.
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to correlations due to microscopic fluctuations. Thus,
our first task is to find conserved fluid modes and their
linear-response evolution. Let us parametrize locally the
contour Γt by the Fermi points θaðx; tÞ (1 ≤ a ≤ 2q).
Fluctuations can be expressed as deformations of the
contour θaðx; tÞ → θaðx; tÞ þ δθaðx; tÞ. Plugging this into
Eqs. (4a) and (4b), one would arrive at an evolution
equation for δθaðx; tÞ, describing the propagation of sound
waves on top of the background solution (xtðsÞ; θtðsÞ).
These, however, do not take the form of conservation
equations.
Instead, we consider the momentum and energy of an

excitation [25],pðθÞ ¼ θ þ R ðdθ0=2πÞϕðθ − θ0Þnðθ0Þ1drðθ0Þ
and ϵðθÞ ¼ Eðx; θÞ þ R ðdθ0=2πÞϕðθ − θ0Þnðθ0Þ1drðθ0Þ×
veffðθ0Þ, respectively. The dispersion relation of such an
excitation is the effective velocity, ∂θϵ=∂θp ¼ veff . In the
theory of GHD [15,16], any conserved charge of the form
q ¼ R ðdθ0=2πÞfðθ0Þnðθ0Þ1drðθ0Þ, which counts fðθ0Þ for
every quasiparticle θ0, satisfies a continuity equation with
the current j ¼ R ðdθ0=2πÞfðθ0Þnðθ0Þ1drðθ0Þveffðθ0Þ. In an
external potential, the continuity equation includes the
effective acceleration Eq. (5), see Ref. [74]:
∂tqþ ∂xj ¼

R ðdθ0=2πÞf0ðθ0Þnðθ0Þ1drðθ0Þaeffðθ0Þ. We ob-
serve that the second terms in the expressions of pðθÞ, ϵðθÞ

are precisely of the form q, j [with fðθ0Þ ¼ ϕðθ − θ0Þ
[77] ]; therefore, the conservation equation with force term
holds,

∂tpþ ∂xϵþ aeff1dr ¼ 0: ð6Þ

Excitations in a zero-entropy state occur at the Fermi
points. Combining the dispersion relation, Eqs. (6) and (4),
one finds an exact conservation law for their momentum
pa ¼ pðθaÞ and energy ϵa ¼ ϵðθaÞ (see Supplemental
Material for detailed derivation [61]):

∂tpa þ ∂xϵa ¼ 0: ð7Þ

Then the small fluctuations obey, at first order,

∂tδpa þ
X
b

∂x½Ab
aδpb� ¼ 0; ð8Þ

where Ab
a ¼ ∂ϵa=∂pb is the flux Jacobian. This is the

propagation equation we were looking for: it is an equation
for linear sound waves which takes the form of a con-
servation equation.
Quantization of sound waves.—The conserved modes

δpa can now be given quantum fluctuations, δpa → δp̂a. In

FIG. 2. Quantum quench from double to single well in the 1D Bose gas with delta repulsion. We compare the predictions of GHD and
QGHD (orange curves) to time-dependent DMRG simulation for N ¼ 10 (light gray) and N ¼ 20 particles (dark gray). First row: Fermi
contour evolved with GHD. Second row: Density profile predicted by GHD, compared with DMRG. Third and fourth row: Connected
density-density correlator hρ̂ðxÞρ̂ðx0Þi predicted by QGHD and compared with DMRG, for two different positions x0. Each row shows
the corresponding quantity as a function of the spatial coordinate x, at different times, expressed as a fraction of the period τ (from t ¼ 0
in the first column to t ¼ 0.3τ in the last). For the DMRG simulation we work with particles on a lattice at very low density. The
parameters are as follows: repulsion strength ḡ ¼ 0.1; L ¼ 800 lattice sites; number of particles N ¼ 10, 20; ℏ ¼ 30=N; prequench
potential V0ðxÞ ¼ ðx=LÞ4 − 0.12ðx=LÞ2; postquench potential VðxÞ ¼ ω2x2=2 with ω ¼ 0.3=L (and period τ ¼ 2π=ω). The
dimensionless Lieb parameter γ ¼ ḡ=ℏρ is of order 1, so we are far from both the Gross-Pitaevski limit and the Tonks-Girardeau limit.

PHYSICAL REVIEW LETTERS 124, 140603 (2020)

140603-3



quantized fluid theory one assumes that there is a classical
hydrodynamic action S ¼ SðfpagÞ, whose minimum gives
rise to the fluid equation, and which provides the quantum
fluctuations and long-range correlations simply by quad-
ratic expansion:

eiS ≈ eiSclassicalþi
P

ab
Sð2Þab δpaδpb: ð9Þ

Passing to the Hamiltonian formalism, there must be a
symplectic structure and a Hamiltonian, quadratic in
hydrodynamic wave operators δk̂a ¼ δp̂a=ℏ, which repro-
duces Eq. (8).
To identify those, consider the measure dp ¼ 1drdθ,

which takes into account the density of allowed states 1dr

[25], and the phase-space volume form it induces,
dx ∧ dp ¼ 1drdx ∧ dθ. This volume form is preserved
by GHD [78]. Therefore, the fluctuations at zero entropy
are fluctuations of an incompressible region in the ðx; pÞ
plane. A first consequence is that small volume variations
dpa ¼ σadpa, where σa ¼ ð−1Þa is the chirality of the
volume boundary, are thermodynamic potentials, leading to
an Onsager reciprocity relation (see SM [61]):

Aab ¼ Aba ðAab ¼ ∂ϵa=∂kb ¼ σbAb
aÞ: ð10Þ

That is, the diagonal matrix σ ¼ diagðfσag1≤a≤2qÞ gives a
symplectic structure under which the flux Jacobian is
symmetric. Second, the problem of quantizing fluctuations
of incompressible regions is well known in the literature on
the quantum Hall effect [79–82]. Parametrizing the boun-
dary of that region as (xðsÞ; pðsÞ) and introducing a density
operator which measures the excess number of occupied
states around (xðsÞ; pðsÞ), δρ̂ðsÞ ¼ ð1=2πℏÞðdx=dsÞ×
δp̂ðxÞ, the commutation relation is the one of a chiral
U(1) current algebra:

½δρ̂ðsÞ; δρ̂ðs0Þ� ¼ 1

2πi
δ0ðs − s0Þ: ð11aÞ

Equivalently, with the local parametrization δp̂aðxÞ:

½δp̂aðxÞ; δp̂bðyÞ� ¼ −iσa2πℏ2δabδ
0ðx − yÞ: ð11bÞ

Using this symplectic structure, the Hamiltonian generating
Eq. (8) can be taken as

Ĥ½Γt� ¼
1

4πℏ

Z
dx

X
a;b

δp̂aðxÞAabδp̂bðxÞ: ð12Þ

Indeed, together with the commutation relation (11b), the
Heisenberg equation,

d
dt

δp̂aðxÞ ¼
i
ℏ
½Ĥ½Γt�; δp̂aðxÞ�; ð13Þ

reproduces the equation for sound waves (8).

The dependence of Ĥ½Γt� on Γt is via that of Aab on
the Fermi points fθcðx; tÞg. The contour-dependent
Hamiltonian (12) is the most important result of this
Letter, and we refer to it as the QGHD Hamiltonian.
Crucially, QGHD is a quadratic theory, so correlation
functions can be calculated easily, at least numerically.
(Higher-derivative and higher-order terms would lead to a
generalization of the nonlinear Luttinger liquid [83,84] or
nonlinear bosonization [85–88], which are beyond the
scope of this Letter.)
QGHD is the theory of a multicomponent, spatially

inhomogeneous, time-dependent, quantum fluctuating
liquid with (locally) q coupled components. Importantly,
in the particular case of homogeneous time-independent
split Fermi seas, we have checked (see SM [61]) that it
coincides with the multicomponent quadratic Hamiltonian
of Eliëns and Caux [70,72] (see also Refs. [69,71]). As
noted by these authors, the case of a single component
q ¼ 1 is nothing but the standard Luttinger liquid theory.
An example, and numerical check.—To illustrate the

possibilities offered by QGHD, we consider the dynamics
of the 1D Bose gas after a quench of the trapping potential
from double well, V0ðxÞ ¼ a4x4 − a2x2, to harmonic,
VðxÞ ¼ ω2x2=2. The gas is initially in its ground state in
V0ðxÞ, with a single pair of Fermi points (i.e., q ¼ 1)
everywhere. At time t > 0, after some fraction of the period
of the trap τ ¼ ð2π=ωÞ, the contour Γt gets deformed and a
region appears near the boundaries with a split Fermi sea
q ¼ 2. Hence this is a true out-of-equilibrium situation, not
describable by standard hydrodynamics. This protocol
mimics the famous quantum Newton’s cradle [18] and it
can be realized experimentally (see, e.g., Refs. [29,89]).
We focus on the equal-time density-density correlation

function (Fig. 2). At a point x, the fluctuations of the
particle density are measured by the operator,

δρ̂ðx; tÞ ¼
X
s

���� dsdx
����δρ̂ðsÞ ¼

X
a

1

2πℏ
δp̂a; ð14Þ

which is a sum over the 2q Fermi points at ðx; tÞ. Its two-
point function at time t is

hδρ̂ðx; tÞδρ̂ðx0; tÞi ¼
X
s

X
s0

���� dsdx
����
���� ds

0

dx0

����G(ðs; tÞ; ðs0; tÞ);
where G(ðs; tÞ; ðs0; t0Þ) is the Green’s function along
the contour G(ðs; tÞ; ðs0; t0Þ) ¼ hδρ̂ðs; tÞδρ̂ðs0; t0Þi. At
t ¼ t0 ¼ 0, G(ðs; 0Þ; ðs0; 0Þ) is the ground state correlation
in the Hamiltonian Ĥ½Γ0�. At later times, G(ðs; tÞ; ðs0; t0Þ)
satisfies the evolution equation derived from

d
dt

δρ̂ðs; tÞ ¼ ∂s(vðsÞδρ̂ðs; tÞ)þ
i
ℏ
½Ĥ½Γt�; δρ̂ðs; tÞ�; ð15Þ

where vðsÞ ¼ veffðθaÞðdx=dsÞ if a labels the local Fermi
point with parameter s. Importantly, G(ðs; tÞ; ðs0; t0Þ) is of

PHYSICAL REVIEW LETTERS 124, 140603 (2020)

140603-4



order O(1) in the limit Eq. (1), so we see that QGHD
captures the first correction to the classical result (which is
zero):

hδρ̂ðx; tÞδρ̂ðx0; tÞi
ρclðxÞρclðx0Þ

¼ Oðℏ2Þ: ð16Þ

In Fig. 2 we numerically evaluate the Green’s function
and compare the QGHD prediction (15) with a time-
dependent density-matrix renormalization group
(tDMRG) [90,91] simulation of the microscopic model.
The dimensionless Lieb parameter γ ¼ ðḡ=ℏρÞ is chosen to
be of order 1, so we are in the truly interacting regime of the
1D Bose gas, away from both the Gross-Pitaevski and the
Tonks-Girardeau limits. The tDMRG simulation is per-
formed for a lattice gas at very low density (N ≪ L, where
L is the number of lattice sites) [92,93], to be as close as
possible to the continuum limit. The largest number of
particles accessible with this method is of order of N ∼ 20
[93], hence far from the thermodynamic limit.
Consequently, finite-N effects are large in our data, which
we display for N ¼ 10, 20 (and L ¼ 800). Still, the
agreement between QGHD and numerics is good, and it
improves as ℏ decreases (i.e., N ∼ 1=ℏ increases). The
tDMRG simulation becomes less accurate at large time; for
this reason we stop the simulation at t ¼ 0.3τ. The
limitations of tDMRG to small N and small t make the
predictive power of QGHD even more apparent: QGHD
does not suffer from those limitations as it works directly in
the thermodynamic limit.
One interesting physical feature of Fig. 2 is the diver-

gence of the density-density correlation, in the thermody-
namic limit, at the points where a change in the number of
Fermi points occurs. They come from the Jacobians in
Eq. (15) and are genuine predictions of the theory, valid for
large enough N. The presence of these peaks can be
explicitly confirmed by direct computations in the
Tonks-Girardeau limit, where they are superimposed to
Friedel oscillations [94] (see also Ref. [65] about the
equilibrium case in a trap, where these divergences appear
near the edges of the system), but they are a general
consequence of QGHD at any interaction strength. At the
small valueN ¼ 20, the peaks’ extent is smaller than that of
Euler fluid cells, hence the peaks are washed away, as seen
in the tDMRG result of Fig. 2.
Conclusion.—By focusing on the GHD description of

the integrable 1D Bose gas in states of zero entropy, we
showed that quantum effects which fall beyond the GHD
description can be reconstructed by allowing quantum
fluctuations of the Fermi contour. We have been partially
inspired by linear fluctuating hydrodynamics [17,95],
where fluctuations are accessed by phenomenologically
adding thermal noise to the linear-response evolution of
conserved fluid modes. We follow the general principles of
this theory, but instead of adding thermal noise, we use

ideas from quantum fluids (see, e.g., Ref. [17]) in order to
access quantum fluctuations. To benchmark QGHD, we
applied it to a zero-entropy quench in the 1D Bose gas,
providing exact predictions for the equal-time density-
density correlations, and checking that they are in good
agreement with numerical tDMRG data obtainable for a
small particle number and short times.
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