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Focusing on semiclassical systems, we show that the parametrically long exponential growth of out-of-
time order correlators (OTOCs), also known as scrambling, does not necessitate chaos. Indeed, scrambling
can simply result from the presence of unstable fixed points in phase space, even in a classically integrable
model. We derive a lower bound on the OTOC Lyapunov exponent, which depends only on local properties
of such fixed points. We present several models for which this bound is tight, i.e., for which scrambling is
dominated by the local dynamics around the fixed points. We propose that the notion of scrambling be
distinguished from that of chaos.
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Introduction.—Classical chaos is a ubiquitous phenome-
non in nature. It explains how a deterministic dynamical
system can be inherently unpredictable due to exponential
sensitivity to initial conditions (the butterfly effect) and is a
foundation of thermodynamics and hydrodynamics. By
contrast, the notion of “quantum chaos” is not as sharply
defined and carries multiple meanings resulting from
several waves of attempts to extend the notion of chaos
into the quantum world. Forty years ago, several groups of
authors [1–4] famously pointed out that the quantization of
classical systems leaves a footprint in the level statistics
of the energy spectrum. Since then, the dichotomy of
random-matrix vs Poisson level statistics has become a
standard diagnostic of quantum integrability, the lack of
which is considered by many as a definition of quantum
chaos. Several other diagnostics have been considered ever
since, including Loschmidt echo [5], dynamical entropy
[6,7], decoherence [8], and entanglement [9–11], etc.,
forming a large “web of diagnostics” [12].
Recently, progress in the study of quantum information,

black holes, and holography [13–20] has led to yet another
putative definition of quantum chaos (which we shall refer
to as “scrambling,” following Sekino and Susskind [14]), in
terms of out-of-time order correlators (OTOCs). Its defi-
nition [21,22] is directly motivated by the butterfly effect.
More precisely, one starts from the observation that the
sensitivity to the initial condition can be quantified by a
Poisson bracket: fqðtÞ; pg ¼ ∂qðtÞ=∂qð0Þ, where q and p
are a conjugate pair. The OTOC is then defined as the
thermal average of the square of a commutator ½q̂ðtÞ; p̂�, by
quantizing fqðtÞ; pg.
The behavior of OTOCs has been studied in a wide range

of quantum systems, and they turn out to be most useful in
characterizing large-N systems dual to semiclassical gravity
via the holographic principle. In such systems, the OTOCs

can have exponential growth, which has been interpreted as a
signature of quantum chaos ever since [22]. The growth rate
is referred to as a (quantum) Lyapunov exponent and bounds
thereof are called “bounds on chaos” [22–25]. Maximally
chaotic systems, which saturate those bounds, received
particular attention as canonical toy models of strongly
coupled systems and of holography [26–30].
Nevertheless, the interpretation of exponential OTOC

growth as chaos is questionable, especially in the
context of quantum systems in the semiclassical limit.
(References [31,32] discussed the issue far from classical
limit.) There, “chaos” has an unambiguous meaning: the
distance between a typical pair of neighboring trajectories
grows exponentially in time. The standard quantitative
measure of chaos is the maximal Lyapunov exponent
λchaos, defined by the phase space average of the log of
sensitivity [33]. This differs from the exponential growth rate
of an OTOC λOTOC, which is rather the log of the phase space
average of sensitivity squared. Since the log of the average is
larger than the average of the log, we have [34] (see also
[33,35–39])

λOTOC ≥ 2λchaos: ð1Þ

Presented as such, the difference between scrambling and
chaos might seem an innocuous quantitative detail and is
often so considered. In this Letter, we argue that, to the
contrary, the difference is qualitative: scrambling can occur
independent of chaos.We shall identify one simple alternative
mechanism: isolated saddle points. Indeed, the unstable
trajectories in a small neighborhood of a saddle can be
enough for the OTOC to grow exponentially. Such contri-
butions lead to another bound,

λOTOC ≥ λsaddle; ð2Þ
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where λsaddle can be simply calculated in terms of the local
properties of the saddle, see below. As a result, OTOCs can
growexponentially in nonchaotic systems. Furthermore, even
in chaotic systems, scrambling can be dominated by saddles
instead of chaos, i.e., λsaddle is closer to λOTOC than λchaos.
These findings suggest that scrambling and chaos should
better be treated as distinct concepts. We note that Ref. [37]
made a similar case using a distinct argument and that the
lack of a clear distinction between integrable and nonintegr-
able behavior for OTOCs was also found away from the
semiclassical limit in Refs. [31,32].
Two-dimensional case.—As an illustrative example, we

consider a special instance of the Lipkin-Meshkov-Glick
(LMG) model [38,40,41], which is integrable. In the
classical limit, it is defined by the Hamiltonian

H ¼ xþ 2z2; ð3Þ

where x, y, z form a classical SU(2) spin satisfying
x2 þ y2 þ z2 ¼ 1 and fx; yg ¼ z, etc. It is easy to check
that ðx; y; zÞ ¼ ð1; 0; 0Þ is a saddle point. Linearizing the
dynamics close to it leads to local coordinates a� satisfying
equations of motion

da�
dt

≈�ωa�; ω ¼
ffiffiffi
3

p
; ð4Þ

near the saddle. Of course, such a fixed point is not
considered chaotic [33], since aþ grows only exponentially
near the saddle.

We now compute an OTOC in the quantization of (3).
Namely, we consider the quantum Hamiltonian Ĥ ¼ x̂þ
2ẑ2 where x̂; ŷ; ẑ ¼ Ŝx=S; Ŝy=S; Ŝz=S are rescaled SU(2)
spin operators with spin S. They satisfy the commutation
relations such as ½x̂; ŷ� ¼ iℏeff ẑ, where ℏeff ¼ 1=S is the
effective Planck constant (ℏeff → 0 is the classical limit)
[42]. The OTOC is defined at infinite temperature, with
respect to the operator Ô ¼ ẑ

CðtÞ ≔ 1

ℏ2
eff

Trð½ÔðtÞ; Ô�†½ÔðtÞ; Ô�Þ
Trð1Þ : ð5Þ

The numerical result (Fig. 1) shows an extended period of
exponential growth, up to the Ehrenfest time

CðtÞ ∼ eλOTOCt; 1≲ t≲ lnð1=ℏeffÞ; ð6Þ

with the Lyapunov exponent λOTOC ¼ ω ¼ ffiffiffi
3

p
precisely.

To explain this observation, let us focus on the classical
limit. Then, the OTOC (5), which is an infinite-temperature
average of a commutator squared, becomes the following
phase space average of sensitivities squared [35]:

CðtÞ ¼
Z
S2

jfzðtÞ; zgj2dA ¼
Z
S2

���� ∂zðtÞ∂ϕ
����
2

dA; ð7Þ

where dA is the normalized area form on the sphere S2 and
ϕ is the azimuthal angle and conjugate to z. The integrand
is not exponentially growing in t, except near the saddle
point. Indeed, in a narrow strip

St ¼ fjaþj < δe−ωt; ja−j < δg ⊂ S2;

of volume δ2e−ωt [43], the linearized dynamics (4) is a valid
approximation up to t, until which point the sensitivity
grows exponentially: j∂zðtÞ=∂ϕj ∼ eωt. Now, recall that
the OTOC involves the square of the sensitivity, which
overwhelms the exponentially small volume. So, St alone
contributes an exponential growth

CðtÞ ≥
Z
St

���� ∂zðtÞ∂ϕ
����
2

dA ∼ e2ωt × δ2e−ωt ¼ δ2eωt: ð8Þ

This leads to the following lower bound on λOTOC:

λOTOC ≥ λsaddle ≔ ω: ð9Þ

In the case of the LMG model, this bound is tight because
the saddle point is the only source of scrambling. Indeed,
the OTOC in a microcanonical ensemble has significant
growth only for energies close to that of the saddle point,
see Fig. 1(b).
We have thus demonstrated by a simple example that

OTOCs can grow exponentially in a classical integrable

(a) (b)

FIG. 1. (a) Extended exponential growth of the infinite-temper-
ature OTOC (5) of the integrable LMG model (3) in the semi-
classical limit. The growth saturates at the Ehrenfest time ∼ lnðSÞ.
The exponent λOTOC ¼ ffiffiffi

3
p

is the unstable exponent of the saddle
point in the classical phase space. (b) Microcanonical-ensemble
OTOCs CEðtÞ¼− 1

125

P
ϵ∈bE hϵj½Ŝz; ŜzðtÞ�2jϵi (S¼2500), where

bE is an energy window of 125 Hamiltonian eigenstates fjϵig with
average energy E. A few representative ensembles across the entire
energy spectrum are shown. The one with E ≈ 1, corresponding to
the classical saddle, dominates the exponential growth observed in
(a). (Inset) Energy landscape of the classical limit, with the same
color code as (b) and the saddle in the center.
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system that has a saddle point. This principle applies to
any saddle points in a two-dimensional phase space. We
remark that the analysis here is distinct from earlier works
[37,38,44,45]. Some of them suggested a bound
λOTOC ≥ 2ω, which differs from (10) by the small volume
factor. In the most recent [38], this difference results from
using a variant of OTOC involving an initial wave packet
localized at the saddle, making an exponential spreading
rather expected. In contrast, our point here is that an attempt
to diagnose chaos in a finite portion of phase space (using
an OTOC with ensemble average) can be failed by false
positives.
General case.—The above reasoning can be directly

generalized to a fixed point in an n-dimensional phase
space. Again, we linearize the dynamics near it, that is,
we can find some local (complex) coordinate system
ðx1;…; xnÞ, such that _xj ¼ ðωj þ iηjÞxj, where

ω1 ≥ � � � ≥ ωm > 0 ≥ ωmþ1 ≥ � � � ≥ ωn

are the real part of stability exponents, and m is the number
of unstable ones [46]. Then consider the “hypercuboid”
defined as

St ¼ fjxij < δe−ωit ∀ i ≤ m; jxij < δ∀ i > mg:

It has volume volðStÞ ∼ δ2ne−
P

j≤m ωjt, and almost any
initial condition within it has exponentially growing sensi-
tivity ∼eω1t up to time t. It follows, by a similar calculation
as Eq. (8), that the localized contribution from St leads to a
lower bound on the OTOC Lyapunov exponent,

λOTOC ≥ λsaddle ≔ ω1 −
X

j>1;ωj>0

ωj: ð10Þ

This bound is a generalization of (9) and reduces to it when
there is a single unstable exponent. The bound in Eq. (10) is
of course nontrivial only if λsaddle > 0. We will give several
examples below where that is the case.
Few-body examples.—We start with the kicked rotor

model, a well-studied Floquet chaotic system; see
Refs. [47–49] for recent experimental realizations. It is
defined by the time-dependent Hamiltonian

HðtÞ ¼ 1

2
p2 þ K cosðxÞ

X
n∈Z

δðt − nÞ; ð11Þ

where K > 0 is the kicking strength. Classically, the
evolution over a period is given by the standard map

ðx; pÞ ↦ (xþ p; pþ K cosðxÞ): ð12Þ

Rozenbaum et al. [34] studied the classical and quantum
OTOC of this model and found that λOTOC > 2λchaos for any
K, with the most pronounced difference occurring in the

regime K ≲ 1, where the model is not classically chaotic
(λchaos ≈ 0). We show here that, in that regime, λOTOC is
dominated by the fixed point ðx; pÞ ¼ ð0; 0Þ, which has a
single unstable exponent,

ωðKÞ ¼ log

�
1þ K

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ K

4

r �
: ð13Þ

Note that a fixed point of (12) corresponds to a periodic
orbit, and ωðKÞ is the rate at which nearby trajectories
deviate from it. Then, it is not hard to adapt the bound (9) to
the following:

λOTOC ≥ ωðKÞ; ð14Þ

which we expect to be tight in the nonchaotic regime. To
verify that, we computed the quantum OTOC following
the definition and method of Ref. [34]. The results, plotted
in Fig. 2, show an excellent agreement between ωðKÞ and
λOTOC when K ≲ 1. As K further increases, the bound (14)
becomes less tight; when K ≳ 5.4, the OTOC will be
dominated by typical trajectories instead of the saddle.
To show that scrambling can be dominated by saddles

even in presence of chaos, we consider the Feingold-Peres
(FP) model of coupled tops, a well-studied few-body
chaotic spin model [50–52]. Its classical Hamiltonian is

H ¼ ð1þ cÞðx1 þ x2Þ þ 4ð1 − cÞz1z2; ð15Þ

where ðxi; yi; ziÞ for i ¼ 1, 2, are two independent SU(2)
spins, and c ∈ ½−1; 1� is a parameter. The model is
integrable when c ¼ �1 and maximally chaotic when c
is near zero (in the sense of saturating the bound of
Ref. [23]). There are no saddles for c ≥ 3=5, whereas
there are two of them for c ∈ ½−1; 3=5�, located at
x1 ¼ x2 ¼ �1, each with one unstable exponent ωðcÞ.
This leads to the following lower bound:

FIG. 2. The markers show the instantaneous exponential
growth rate ln½Cðtþ 1Þ=CðtÞ� as a function of the number of
kicks t in the kicked rotor model, quantized with Planck constant
ℏeff ¼ 2−14 (see Ref. [34] for definition and methods). Good
agreement can be seen with the saddle point exponents ωðKÞ
from Eq. (13), plotted as horizontal lines.
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λOTOC ≥ ωðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cÞð3 − 5cÞ

p
; −1 ≤ c ≤ 3=5;

ð16Þ

and ωðcÞ ¼ 0 otherwise. To test the tightness of this bound,
we computed an OTOC in the quantized FP model, up to
S ¼ 75 (Hilbert space dimension ∼104). In Fig. 3, the
extracted λOTOC’s are compared to ωðcÞ. Surprisingly, the
bound (16) turns out to be tight (within error bars)
throughout c ∈ ½−1; 1�: the FP model has saddle-dominated
scrambling despite being chaotic.
A further example of saddle-dominated scrambling,

which we delegate to the Supplemental Material [53], is
the Dicke model, well known in atomic physics
[36,38,39,54].
Many-body example.—The phenomenon of saddle-

dominated scrambling also occurs in many-body systems.
A simple example where saddle points naturally occur
is provided by the mean-field model of elastic
manifolds pinned in a random medium, described by the
Hamiltonian [57]

H ¼
XN
j¼1

�
1

2
p2
j þ VjðqjÞ

�
þ

XN
i;j¼1

ðqi − qjÞ2
2ðN − 1Þ ; ð17Þ

where q1;…; qN; p1;…; pN are positions and momenta
of N degrees of freedom, which interact via an “all-to-
all” elastic force, while each being pinned in a random
potential Vj. A convenient choice for the latter is VjðqÞ ¼
σ cosðqþ βjÞ where βj’s are uniformly distributed in
½0; 2π� and σ > 0 is the disorder strength. In the strong
disorder regime, such a system is known to have a complex
“glassy” energy landscape, with an exponentially large
number of equilibria with a wide range of energies [58–61].

Numerically (see caption of Fig. 4 for methods), we found a
large number of saddle points that have one or a few
unstable exponents [62] and for which λsaddle is positive. In
fact, the largest λsaddle’s from low-energy saddles far exceed
the typical Lyapunov exponent λchaos at comparable energy,
see Fig. 4. Therefore, scrambling is likely dominated by
saddles rather than chaotic trajectories in this model,
consistent with our expectations for glassy dynamics: the
system is most often trapped around one of an exponential
number of local minima; further phase space mixing is
achieved by rare crossing of energy barriers, which is the
easiest through the vicinity of a saddle point. Nonetheless,
we caution that quenched disorder does not guarantee
saddle-dominated scrambling: counterexamples include the
classical limit of the Sachdev-Ye-Kitaev model [63] and the
atom-cavity model studied in Ref. [64].
Discussion.—We have shown that, independent of

classical chaos, unstable fixed points provide a general
mechanism by which OTOCs can grow exponentially for
an extended period in semiclassical systems. Thismechanism
turns out to be relevant in several few-body models consid-
ered in the recent literature and can be so in many-body
systems as well. Our case studies are by nomeans exhaustive.
In particular, an interesting question is which many-body
integrable systems have saddle-dominated scrambling.
However, our examples make it sufficiently clear that

the notion of scrambling, i.e., the exponential growth of
OTOCs, is distinct from that of chaos, at least in the
semiclassical context. Consequently, the bounds on λOTOC
in Refs. [22–25], when applied to semiclassical systems,
are not only bounds on chaos, but also constrain the
instabilities of fixed points and periodic orbits. In particular,
this realization makes the bound of Ref. [23] on λOTOC

(a)

(d)

(b) (c)

FIG. 3. (a)–(c) Growth of OTOC (5) where Ô ¼ x̂1 þ x̂2, in the
Feingold-Peres model quantized to S ¼ 75, and c ¼ −0.6, 0, and
0.9. The dashed lines are straight lines with slope given by ωðcÞ
from Eq. (16); for c ¼ 0.9, ωðcÞ ¼ 0, and the OTOC is
oscillatory. (d) The data points represent the exponent λOTOC
extracted from the growth of CðtÞ. The continuous curve is ωðcÞ
from Eq. (16).

FIG. 4. Exponents of the saddle point (λsaddle) vs chaos (2λchaos)
contributions to the OTOC in the mean-field depinning model
(17) (σ ¼ 2 andN ¼ 128). In each case, we cool down the system
from T ¼ 2 gradually to T ¼ 0.05, generating along the way
10000 configurations at different energy densities. To estimate
the chaos contribution, we compute the sensitivity up to t ¼ 50
starting from each configuration and extract λchaos. We plot the
resulting ðE=N; 2λchaosÞ as red crosses. To estimate the saddle
contributions, we perform gradient descent from each configu-
ration to reach an equilibrium and compute its λsaddle. The positive
values are plotted as dark dots. At low energies, λchaos is severely
suppressed, while saddles with large contribution to OTOC are
still abundant.
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nontrivial even for classical integrable systems.
Distinguishing scrambling from chaos may also affect
applications of the former, such as teleportation through
a traversable wormhole: for example, the classical protocol
of Ref. [65] (see also [66–68]) can be realized independent
of chaos. Finally, the question remains whether the dis-
tinction between chaos and scrambling established here in
the semiclassical limit might have an equivalent in the case
of strongly coupled quantum systems that have a semi-
classical holographic dual.
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