
 

Universality in the Onset of Superdiffusion in Lévy Walks
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Anomalous dynamics in which local perturbations spread faster than diffusion are ubiquitously observed
in the long-time behavior of a wide variety of systems. Here, the manner by which such systems evolve
towards their asymptotic superdiffusive behavior is explored using the 1D Lévy walk of order 1 < β < 2.
The approach towards superdiffusion, as captured by the leading correction to the asymptotic behavior, is
shown to remarkably undergo a transition as β crosses the critical value βc ¼ 3=2. Above βc, this correction
scales as jxj ∼ t1=2, describing simple diffusion. However, below βc it is instead found to remain
superdiffusive, scaling as jxj ∼ t1=ð2β−1Þ. This transition is shown to be independent of the precise model
details and is thus argued to be universal.
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Introduction.—The Lévy walk has proven to be an
effective instrument for modeling a vast number of phe-
nomena in which transport propagates faster than diffusion.
For example, it has been shown to successfully reproduce
the peculiar scaling exhibited by chaotic and turbulent
systems [1,2], the superdiffusive spreading of perturba-
tions and associated anomalous transport properties of
low-dimensional systems [3–8], the anomalous tagged
particle dynamics observed in disordered media [9,10], the
spatial evolution of trapped ions and atoms in optical
lattices [11–13], and even the behavior exhibited by living
matter [14], on both microscopic [15–17] and macroscopic
scales [18,19].
In 1D, the Lévy walk describes particles, or “walkers,”

whose evolution consists of many random excursions on the
infinite line. In each such excursion the walker draws a
random direction, in which it walks for a random duration u
with a fixed velocity of magnitude v [6,20,21]. The “walk
time”u is drawn from a heavy-tailed distributionϕðuÞwhose
tail scales as∝ 1=u1þβ for largeu, withβ called the “order”of
the Lévy walk. The model is well known to exhibit super-
diffusive behavior in the regime 1 < β < 2, where the
divergence of all but the zeroth and first moments of ϕðuÞ
profoundly affects the walker’s motion: while the average
walk duration is finite, the second moment’s divergence
implies that the walker may persist in very long excursions
[21]. This is manifested in the probability distributionPðx; tÞ
of finding the walker inside the space interval (x, xþ dx) at
time t. For long times and large distances Pðx; tÞ is
dominated by such long excursions and assumes the asymp-
totic form P0ðx; tÞ ¼ t−1=βfðt−1=βjxjÞ, where f is a known
function of the scaling variable t−1=βjxj [21–24]. The
asymptotic mean-square displacement (MSD), truncated to
the restricted domain x ∈ (−ðvtÞ1=β; ðvtÞ1=β), correspond-
ingly diverges with time as ∼t2=β [21].

These hallmark results have paved the way for employ-
ing the Lévy walk to model the superdiffusive transport
behavior observed in experiments and numerical simula-
tions of numerous systems, across a broad range of
scientific disciplines. Yet experimental setups and numeri-
cal simulations alike are inherently confined to finite
laboratories, data sets, computer memory, and graduate
program’s duration. Superdiffusive behavior in general, and
a convincing connection to the Lévy walk model in
particular, are consequently hard to establish since the
asymptotic limit is difficult to reach in practice [3,25–34].
An interesting question which naturally arises in this
context is: “how do superdiffusive systems approach
their limiting asymptotic behavior?” Namely, “do super-
diffusive dynamics posses any universal features which
become visible before the strictly asymptotic regime is
reached?”
This Letter studies the onset of superdiffusion in the 1D

Lévy walk of order 1 < β < 2, focusing on the leading
correction to the asymptotic probability distribution
P0ðx; tÞ, which describes the approach of Pðx; tÞ towards
its asymptotic form. A transition is reported as β crosses the
critical value βc ¼ 3=2. For β > βc, the correction scales
diffusively as jxj ∝ t1=2 while for β < βc it is remarkably
found to remain superdiffusive, scaling as jxj ∝ t1=ð2β−1Þ.
The leading correction to the asymptotic MSD similarly
undergoes a transition at β ¼ βc. The transition is shown to
depend only on the tail behavior of ϕðuÞ and is thus argued
to be universal. As such, it should also appear in many of
the superdiffusive systems modeled by Lévy walks and
could thus be used to substantially simplify studying their
anomalous properties from finite-time data.
The model.—The 1D Lévy walk of order β describes

“walkers” moving on the infinite line. Their motion
consists of many random excursions, all with a fixed
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velocity magnitude v but each along a random direction
and lasting a random duration u drawn from the distribution

ϕðuÞ ¼ βtβ0θ½u − t0�u−1−β: ð1Þ

The step function θ½x� keeps ϕðuÞ normalizable by impos-
ing a cutoff at the minimal walk time t0 > 0.
Figure 1 demonstrates a single Lévy walk trajectory for

different values of β, qualitatively illustrating the difference
between simple Brownian motion and the superdiffusive
Lévy walk. For β > 2, both the first and second moments of
ϕðuÞ are finite and the Lévy walk effectively reduces to
Brownian motion [21,22]. For 1 < β < 2, which corre-
sponds to the superdiffusive regime considered in this
Letter, the average walk time remains finite but the second
moment diverges, occasionally giving rise to very long
excursions which grow increasingly more probable as
β → 1. We hereafter restrict our discussion to the super-
diffusive regime of 1 < β < 2.
The probability of finding the walker inside the interval

(x, xþ dx) at time t for an initial condition Pðx; 0Þ ¼ δðxÞ
satisfies the integral equation [6,21]

Pðx;tÞ¼0.5ψðtÞδðjxj−vtÞ

þ0.5
Z

t

0

duϕðuÞ½Pðx−vu;t−uÞþPðxþvu;t−uÞ�;

ð2Þ

where ψðuÞ is the probability of drawing a walk time
greater than u, i.e.,

ψðuÞ ¼
Z

∞

u
dwϕ ðwÞ ¼ 1 − θ½u − t0�(1 − ðt0=uÞβ): ð3Þ

The first line of Eq. (2) describes the walker’s probability to
reach x at time t during its initial excursion while the
second describes its probability of arriving to x at time t
following a previous excursion which ended at position
x� vu at time t − u.
After a Fourier-Laplace transform (see Sec. I of the

Supplemental Material [35]), Eq. (2) for Pðx; tÞ becomes

P̃ðk; sÞ ¼ ψ̃ðs − ivkÞ þ ψ̃ðsþ ivkÞ
2 − ϕ̃ðs − ivkÞ − ϕ̃ðsþ ivkÞ : ð4Þ

Here P̃ðk; sÞ ¼ R∞
0 dte−stP̂ðk; tÞ is the Laplace transform

of the Fourier transformed probability distribution
P̂ðk; tÞ ¼ R∞

−∞ dxe−ikxPðx; tÞ, ϕ̃ðs� ivkÞ and ψ̃ðs� ivkÞ
are the respective Fourier-Laplace transforms of ϕðtÞ and
ψðtÞ, and fk; sg are the respective Fourier and Laplace
conjugates of fx; tg.
Main results.—The forthcoming analysis and results are

presented in Fourier space, since only there does the
probability distribution admit a closed form. The leading
correction to the asymptotic distribution P̂0ðtjkjβÞ is found
to be

P̂ðk; tÞ
P̂0ðtjkjβÞ

≈
�
exp ½−D1tjkj2β−1� β < βc

exp ½−D2tk2� β > βc
; ð5Þ

where

P̂0ðtjkjβÞ ¼ e−D0tjkjβ ; ð6Þ

and the diffusion coefficients D0; D1, and D2 are provided
explicitly in Eq. (16). This correction, which describes
the approach of P̂ðk; tÞ towards its asymptotic scaling form
P̂0ðtjkjβÞ, remarkably undergoes a transition as β crosses
the critical value βc ¼ 3=2: for β > βc, the leading cor-
rection scales diffusively as jkj ∝ t−1=2, while for β < βc it
remains superdiffusive, scaling as jkj ∝ t−1=ð2β−1Þ. The
transition is shown to depend only on the tail behavior
of ϕðuÞ and is thus argued to be universal. The leading
correction to the asymptotic truncated MSD similarly
undergoes a transition at β ¼ βc. For large t, the truncated

MSD hXðtÞ2i ¼ R cðvtÞ1=β
−cðvtÞ1=β dxx

2Pðx; tÞ takes the form

hXðtÞ2i ≈ hXðtÞ2i0 þ δhXðtÞ2i, where c ∼Oð1Þ is an arbi-
trary constant,

hXðtÞ2i0 ¼ h0vðvtÞ2=β; ð7Þ

and

FIG. 1. Lévy walk trajectories for three different values of β,
alongside the corresponding asymptotic scaling regimes, for
v ¼ t0 ¼ 1. For β > 2 the Lévy walk effectively reduces to
Brownian motion, as depicted by the green trajectory for β1¼3

which is contained within the diffusive scaling regime t ¼ x2

(magenta). The black trajectory for β2 ¼ 5=3, contained within the
superdiffusive scaling regime t ¼ jxj5=3 (yellow), consists of
“mostly diffusive”motion that is occasionally interrupted by long
bouts of ballistic motion. These ballistic bouts become more
frequent, pronounced and erratic in the red trajectory for β3 ¼ 4=3,
confined to the superdiffusive scaling regime t ¼ jxj4=3.
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δhXðtÞ2i ¼ −
�
D1h2β−1ðvtÞ

3−β
β β < βc

D2h2vt β > βc
; ð8Þ

with hγ provided in Eq. (18).
The analytical results for P̂ðk; tÞ in Eq. (5) are supple-

mented by numerical simulation results of the Lévy walk’s
dynamics, denoted by P̂simðk; tÞ, and by the numerical
inverse-Laplace transform of the exact Eq. (4) for the
distribution, denoted by P̂numðk; tÞ. Figure 2 plots the
temporal evolution of log ½P̂ðk; tÞ� versus k while Fig. 3
plots log ½P̂ðk; tÞ=P̂0ðtjkjβÞ� versus D1tjkj2β−1 and D2tk2

for β ¼ 4=3 < βc and β ¼ 5=3 > βc, respectively. Both
figures illustrate an excellent agreement between Eq. (5)
and both the simulation and numerical analysis. A figure
comparing the results in Eqs. (7) and (8) for the truncated
MSD to the results of direct numerical simulations of the
Lévy walk model is given in Sec. II of the Supplemental
Material [35]. Additional details regarding the simulation
procedure are provided in Sec. VI of the Supplemental
Material [35].
Asymptotic analysis.—To obtain the leading correction

to the asymptotic probability distribution, our strategy will
be to study P̃ðk; sÞ in the following order of limits: we first

retrieve the leading behavior of P̃ðk; sÞ for small s (i.e.,
large t), then take the inverse Laplace transform and finally
extract the leading correction to P̂0ðtjkjβÞ in the scaling
limit jkj → 0, t → ∞ with tjkjβ kept constant. It will prove
convenient to transform to the dimensionless variables

σ ¼ t0s; τ ¼ t=t0; q ¼ l0k; ð9Þ
where l0 ¼ t0v denotes the typical length scale of the
model. As demonstrated in Sec. III of the Supplemental
Material [35], only the leading term in the expansion of
ψ̃ðσ − iqÞ þ ψ̃ðσ þ iqÞ of Eq. (4) in small σ and jqj enters
the leading correction. This agrees with intuition, as ψðtÞ in
Eq. (2) for Pðx; tÞ describes the walker’s probability of
arriving to x at time t during its initial excursion. This
contribution naturally becomes irrelevant in the scaling
limit, as jxj and t grow larger.
We next consider the small-σ behavior of ϕ̃ðσ ∓ iqÞ,

which appears in the denominator of Eq. (4). Expanding
the Fourier-Laplace transform to first order in σ yields

ϕ̃ðσ ∓ iqÞ ≈
Z

∞

0

dτϕðτÞe�iqτð1 − στÞ: ð10Þ

FIG. 2. A log-plot of the probability distribution for small jkj,
long times (indicated near each curve) and v ¼ t0 ¼ 1. Stars
denote simulation data P̂simðk; tÞ, dots denote the numerical
solution P̂numðk; tÞ, solid curves denote P̂ðk; tÞ and dashed curves
denote the asymptotic solution P̂0ðtjkjβÞ.

FIG. 3. A log-plot of the probability distribution divided by the
asymptotic solution versus D1tjkj2β−1 and −D2tk2 for β ¼ 4=3
and β ¼ 5=3, respectively. The data was obtained for a large time
t ∼Oð107Þ and v ¼ t0 ¼ 1. Blue stars denote simulation data
P̂simðk; tÞ, orange dots denote the numerical solution P̂numðk; tÞ
and the dashed green line is provided as a guide for the eye.

PHYSICAL REVIEW LETTERS 124, 140601 (2020)

140601-3



With this, the large-time behavior of P̃ðq; σÞ is recovered as

P̃ðq; σÞ ≈ β

β − 1

1

AðqÞ þ BðqÞσ ; ð11Þ

whose inverse Laplace transform is

P̂ðq; τÞ ≈
�

β

β − 1

1

BðqÞ
�
e−IðqÞτ: ð12Þ

Here we have defined

IðqÞ ¼ AðqÞ=BðqÞ; ð13Þ
where the functions AðqÞ and BðqÞ are given by

AðqÞ ¼ 1 − hcos ½qu�iu ≈ ajqjβ − βq2

2ð2 − βÞ þOðq4Þ

BðqÞ ¼ ∂qhsin ½qu�iu ≈
β

β − 1
þ bjqjβ−1 þOðq2Þ; ð14Þ

with a ¼ cos ½πβ=2�Γ½1 − β� and b ¼ β sin ½πβ=2�Γ½1 − β�
such that a > 0 and b < 0 for 1 < β < 2. We have also
used hfðq; uÞiu ¼

R∞
0 duϕðuÞfðq; uÞ to denote the expect-

ation value with respect to u and Γ½x� to denote the Euler
gamma function.
The long-time behavior of P̂ðq; τÞ finally emerges: upon

defining the scaling variable jzj ¼ τjqjβ and taking the
scaling limit, the expression multiplying the exponential in
Eq. (12) reduces to unity and IðqÞτ becomes

c0jzj − c1jzj
2β−1
β τ−

β−1
β − c2jzj

2
βτ−

2−β
β ; ð15Þ

where c0¼aðβ−1Þ=β, c1¼c20b=a, c2 ¼ ðβ − 1Þ=ð4 − 2βÞ,
and faster decaying terms of ∼Oðτ−ðβþ1Þ=βÞ are neglected.
Reinstating fq; τg in place of z and replacing the dimen-
sionless variables fq; τg by fk; tg via Eq. (9) yields P̂ðk; tÞ
of Eq. (5) with the diffusion coefficients given by

D0¼c0l
β
0=t0; D1¼−c1l

2β−1
0 =t0; D2¼−c2l2

0=t0: ð16Þ

A typical quantity of interest in studies of superdiffusive
systems is the MSD. Having derived the leading correction
to P̂0ðjkjβtÞ, we next analyze the leading correction to the
asymptotic truncated MSD hXðtÞ2i0 for a walker that is
initially located at the origin. Since Pðx; tÞ describes a
superdiffusive process, the MSD

R
∞
−∞ dxx2Pðx; tÞ diverges

when integrated over the infinite line. Limiting the domain
to x∈ ½−cðvtÞ1=β;cðvtÞ1=β�, where c ∼Oð1Þ is an arbitrary
constant, provides the temporal scaling of this divergence
and gives

hXðtÞ2i ¼ ðvtÞ2=β
Z

∞

−∞
dκP̂ðκðvtÞ−1=β; tÞgðκÞ; ð17Þ

where Pðx; tÞwas replaced by its Fourier transform, gðκÞ ¼
ð2cκ cos ½cκ� − ð2 − c2κ2Þ sin ½cκ�Þ=ðπκ3Þ and the change
of variables κ ¼ kðvtÞ1=β was used. Substituting P̂ðk; tÞ of
Eq. (5) and expanding in large t up to the leading correction
yields Eqs. (7) and (8), with the coefficient hγ given by

hγ ¼ v−1
Z

∞

−∞
dκe−v

−1D0jκjβgðκÞjκjγ: ð18Þ

Universality of βc.—We next argue that the transition at
βc ¼ 3=2 is universal by deriving it from a general walk-
time distribution whose tail has the form ∼u−1−β. To this
end, recall that in Eq. (12) we found that the large-time
properties of P̂ðk; tÞ are determined by IðqÞ. As such,
we turn our attention to it. Since the duration of a walk
cannot be negative, ϕðuÞ must vanish for u < 0. Thus, the
integration range in hcos ½qu�iu and hsin ½qu�iu of Eq. (14)
can be safely extended to u ∈ ð−∞;þ∞Þ, allowing IðqÞ to
be rewritten as

IðqÞ ¼ ð1 − Re½ϕ̂ðqÞ�Þ=∂qIm½ϕ̂ðqÞ�; ð19Þ

where ϕ̂ð�qÞ ¼ R∞
−∞ duϕðuÞe∓iqu is the characteristic

function of ϕðuÞ, whose Hermitian property ϕ̂ð−qÞ ¼
ϕ̂ðqÞ� was used to obtain Eq. (19).
The ground is now set to hold a more general discussion

on the structure of IðqÞ: since ϕðuÞ is one sided, it is
nonsymmetric and so its Fourier transform ϕ̂ðqÞ contains
both real and imaginary terms. Now, had all of the moments
of ϕðuÞ been finite, ϕ̂ðqÞ would have been an analytic
function whose nth power-series coefficient in q would
simply be ∝ ðiÞnhuniu. However, due to its heavy tail, the
moments of ϕðuÞ are not all finite and so additional
nonanalytic terms must also show up in ϕ̂ðqÞ. It is
straightforward to show that a heavy tail ∼u−1−β in ϕðuÞ
does indeed result in real and imaginary nonanalytic terms
in ϕ̂ðqÞ which are ∝ jqjβ. Therefore, ϕ̂ðqÞ must be the sum
of two parts: the first being an analytic power series in q
while the second contains nonanalytic terms ∝ jqjβ. We
thus write ϕ̂ðqÞ as ϕ̂ðqÞ ¼ Re½ϕ̂ðqÞ� þ iIm½ϕ̂ðqÞ� with

�
Re½ϕ̂ðqÞ� ¼ P∞

n¼0 ω2nq2n þ d1jqjβ
Im½ϕ̂ðqÞ� ¼ P∞

n¼0 ω2nþ1q2nþ1 þ d2jqjβ
; ð20Þ

where ωn are q-independent coefficients while d1 and d2
may depend on the sign of q. Since ϕðuÞ is normalized
ϕ̂ðq ¼ 0Þ is equal to unity, setting ω0 ¼ 1. With this, the
small-jqj approximation of IðqÞ becomes

IðqÞ ≈ ðd1jqjβ þ ω2q2Þ=ðω1 þ βd2jqjβ−1Þ: ð21Þ

Equation (21) has the same structure as in Eqs. (14) and
(15) and must therefore also lead to a transition at
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βc ¼ 3=2. We call this transition universal since, as we have
just shown, it can be derived under fairly general consid-
erations, namely that the tail of ϕðuÞ has the form ∼u−1−β.
The characteristic function ϕ̂ðqÞ is explicitly computed in
Sec. IV of the Supplemental Material [35], showing it is
indeed of the same form as in Eq. (20). IðqÞ is computed for
a different walk-time distribution, which shares only its
heavy tail ∼u−1−β with ϕðuÞ, and the same transition is
recovered at βc ¼ 3=2 in Sec. V of the Supplemental
Material [35].
Conclusions.—In this Letter, the approach of the prob-

ability distribution of a superdiffusive system towards its
asymptotic form was studied using the Lévy walk of order
1 < β < 2. This approach, described by the leading cor-
rection to the asymptotic distribution, was shown to
undergo a transition at the critical value βc ¼ 3=2, at which
its scaling remarkably changes from diffusive to super-
diffusive. The leading correction to the asymptotic MSD
also undergoes a transition at the same βc. The transition
was argued to be universal as it depends only on the tail
behavior of the walk time distribution.
These results are especially useful since they can readily

be applied to study the many superdiffusive systems
modeled by Lévy walks, whose finite-time corrections
are often unavoidable and devastating. Such corrections are
known to pose a significant challenge in the study of
anomalous heat transport [3,6–8,24,36,37]. For example,
the Lévy walk of order β ¼ 5=3 was used in [3] to model
the leading asymptotic superdiffusive spreading of energy
perturbations and entailing anomalous transport of a 1D
Hamiltonian system. Yet the connection between anoma-
lous transport and Lévy walks is suggested to extend to an
entire class of similar models [3]. Indeed, a diffusive
correction to the asymptotic anomalous energy spreading
and heat current have recently been reported in a stochastic
1D gas system [37]. A diffusive correction to the current
was similarly derived under nonequilibrium settings for the
1D Lévy walk of order β > 3=2 in [8]. Both of these results
are consistent with the findings reported in this Letter. It
would thus be of great interest to further test these results in
additional experimental and numerical superdiffusive set-
ups, especially ones modeled by Lévy walks with β < βc. It
would also be very interesting to study the onset of
superdiffusion in the related Lévy flight model where
particles draw a “flight distance,” rather than a walk time,
immediately materializing at their new location [21,38,39].

I thank David Mukamel for his ongoing encouragement
and support and for many helpful discussions. I also
thank Hillel Aharony, Julien Cividini, Anupam Kundu,
Bertrand Lacroix-A-Chez-Toine, and Oren Raz for criti-
cally reading this manuscript and for their helpful remarks.
This work was supported by a research grant from the
Center of Scientific Excellence at theWeizmann Institute of
Science.

*asaf.miron@weizmann.ac.il
[1] M. F. Shlesinger, B. J. West, and J. Klafter, Lévy Dynamics
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errors in identifying Lévy flight behaviour of organisms, J.
Anim. Ecol. 76, 222 (2007).

[27] S. Benhamou, How many animals really do the Lévy walk?,
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