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Machine learning methods have proved to be useful for the recognition of patterns in statistical data.
The measurement outcomes are intrinsically random in quantum physics, however, they do have a
pattern when the measurements are performed successively on an open quantum system. This pattern is
due to the system-environment interaction and contains information about the relaxation rates as well as
non-Markovian memory effects. Here we develop a method to extract the information about the
unknown environment from a series of projective single-shot measurements on the system (without
resorting to the process tomography). The method is based on embedding the non-Markovian system
dynamics into a Markovian dynamics of the system and the effective reservoir of finite dimension. The
generator of Markovian embedding is learned by the maximum likelihood estimation. We verify the
method by comparing its prediction with an exactly solvable non-Markovian dynamics. The developed
algorithm to learn unknown quantum environments enables one to efficiently control and manipulate
quantum systems.
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Introduction.—Quantum systems are never perfectly
isolated which makes the study of open quantum dynamics
important for various disciplines including solid-state
physics [1], quantum chemistry [2], quantum sensing
[3], quantum information transmission [4], and quantum
computing [5]. Open quantum dynamics is a result of
interaction between the system of interest and its environ-
ment. It is usually assumed that the environment is an
infinitely large reservoir in statistical equilibrium, which
has a well-defined interaction with the system [6].
However, the environments of many physical systems
are rather complex and structured [7–19]. A model of
the system-environment interaction is often heuristic and
oversimplified (e.g., a harmonic environment), but even in
this case the analysis is rater complicated and requires some
elaborated analytical and numerical methods [20–22]. A
theoretical model may also neglect some additional sources
of decoherence and relaxation. The experimental analysis
of the environmental degrees of freedom is difficult because
of their inaccessibility in practice. In fact, one can only get
some information about the actual environment by probing
the system [23,24]. Therefore, one faces an important
problem to learn the unknown environment and its inter-
action with the quantum system by probing and affecting
the system only.
This problem can be partly solved within the assumption

of fast bath relaxation, when the system density operator ϱS
experiences the semigroup dynamics ϱSðtÞ ¼ eLStϱSð0Þ

with the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
generator LS [25,26]. In this case, the generator is recon-
structed by performing a process tomography of the
channel ΦSðt1Þ ¼ eLSt1 for a fixed time t1 > 0 [27,28].
The actual dynamics does not usually reduce to a semi-
group though [29–31]. The problem of learning the
environment is mostly attributed to memory effects accom-
panying the non-Markovian dynamics. In this case, one can
still resort to the process tomography of channels ΦSðt1Þ,
ΦSðt2Þ, …, ΦSðtKÞ by preparing various initial system
states ϱSð0Þ and performing different measurements on the
system at time moments t1 < t2 < � � � < tK . This pro-
cedure is time consuming because one has to gather enough
statistics for all time moments (the total number of required
measurements is Kd8S=ϵ

2 for a dS-dimensional quantum
system and the accuracy ϵ of statistical reconstruction
[32,33]). Moreover, the tomographic reconstruction of each
channel ΦSðtiÞ implies resetting the environment in the
same initial state after each measurement, which is difficult
to control in the experiment, especially for a strong
coupling between the system and environment.
Recently proposed methods exploit the transfer tensor

techniques [34–36] to learn the Nakajima-Zwanzig equa-
tion [37,38] ðd=dtÞϱSðtÞ ¼

R
t
0 Kðt − t0ÞϱSðt0Þdt0 and the

recurrent neural networks [39] for defining Lindblad
operators and learning the convolutionless master equation
ðd=dtÞϱSðtÞ ¼ LSðtÞϱSðtÞ. An implementation of the latter
approach in practice encounters the same difficulties related
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with the necessity to perform state tomography at different
time steps.
In this Letter, we develop a method to learn the effective

Markovian embedding [24,40–44] for non-Markovian
processes instead of learning the master equation for the
system (S). Within such an approach, the environment is
effectively divided into two parts: the first one carries
memory of the system and is responsible for non-
Markovian dynamics [effective reservoir (ER)]; the second
one is memoryless and causes Markovian decoherence and
dissipation of Sþ ER. The system evolution reads

ϱSðtÞ ¼ trER½ϱSþERðtÞ�; ð1Þ
dϱSþERðtÞ

dt
¼ LSþER½ϱSþERðtÞ�; ð2Þ

where the generator LSþER governs dissipative and
decoherence processes on the system and the effective
reservoir.
A division of the environment into two parts is similar to

the pseudomode method [45–47], the reaction coordinate
model [48,49], and the non-Markovian core model [50],
where one derives a Markovian master equation in the
GKSL form for the extended system comprising the system
and a finite number of auxiliary modes. In spin-bosonic
models, the Markovian embedding is justified if the bath
correlation function has exponentially damped correlations
[19]. However, for power-law bath correlation functions
with long-range tails [51], the number of auxiliary modes
diverges, which limits applicability of the Markovian
embedding at a long timescale.
The density operator ϱSðtÞ is unaccessible in a single

measurement though, so any relevant information about the
system is only gained in a series of measurements. On the
other hand, measurement interventions into the system
evolution complicate the analysis due to the no-informa-
tion-without-disturbance principle. Consider a series of
projective measurements performed on the system at
different times t1 < t2 < � � � < tn, with the measurement
basis being chosen randomly, see Fig. 1. The measurement
outcomes seem to be completely uninformative due to the
intrinsic probabilistic nature of quantum mechanics and the
wave function collapse at each measurement, as an example
in Fig. 1 suggests. However, such a series of measurement
outcomes does contain some information because the
outcomes at each time moment are not equiprobable but
appear in accordance with the Born rule. In this Letter, we
demonstrate that a sufficiently long series of measurement
results has a pattern that can be recognized by a machine
[52]. This is a sharp distinction from conventional tomo-
graphic approaches based on numerous repetitions of
identical experiments to gather enough statistics.
Our algorithm maximizes the likelihood of observed

measurement outcomes and provides the generator LSþER
for any fixed dimension of the effective reservoir dER,

which is a hyperparameter. Computationally, the optimal
dER corresponds to the maximal likelihood on the vali-
dation set, which prevents overfitting (see Supplemental
Material [53]). Physically, the sufficient value of dER can be
estimated through a reduced set of parameters: the system-
environment coupling strength, reservoir correlation time,
cutoff frequency of the spectral function, and system’s
number of degrees of freedom interacting with the envi-
ronment [44,53]. Alternatively, dER can also be estimated
via the ensemble learning method [61].
If the system evolution is Markovian (dER ¼ 1), then the

result of measurement at time tk depends on the measure-
ment outcome at time tk−1 only and does not depend on
results of earlier measurements at times tk−2; tk−3;… [62].
Instead, the non-Markovian dynamics is accompanied by
correlations in the measurement outcomes [62–66], which
can be analyzed via the process matrix [67] and the process
tensor [68]. The process tensor is a particular form of a
quantum network [69], which is defined through the
generator LSþER in our model, see Fig. 2. The
reconstruction of a general process tensor requires expo-
nentially many projective measurements [70]. However, the
process tensor has a peculiar form in our model and
depends on the generator LSþER only, so it can be
reconstructed by maximizing the likelihood of getting
the observed outcomes for a single series of measurements
without resorting to the full quantum tomography.
Likelihood function and its gradient.—Suppose the

experimental setup allows for projective measurements
of the system at times ti ¼ iτ, i ¼ 1;…; n, with the
measurement basis fjφðiÞ

k igdSk¼1 being randomly chosen at
each time moment ti. Observation of the particular

FIG. 1. (Top) Interventions into the open dynamics of the
system S by projective measurements. Blocks fUig depict the
interaction between S and the actual environment (E) in between
the measurements. (Bottom) Example of the Bloch vector
evolution for a qubit system subjected to measurements in
random bases at time moments ti ¼ i. Circles correspond to
the wave function collapse.
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measurement outcome ki transforms the system state into

jφðiÞ
ki
ihφðiÞ

ki
j. Denote Ei ¼ jφðiÞ

ki
ihφðiÞ

ki
j ⊗ IER the projector

acting on the system and effective reservoir. The collection
of projectors fEigni¼1 is the training dataset that feeds the
learning algorithm.
A superoperator Φ ¼ exp ðτLSþERÞ governs the system

and the effective reservoir evolution in between two
sequential measurements. The probability to get the par-
ticular sequence of measurement outcomes fkigni¼1 (the
data fEigni¼1) equals [71]

p ¼ trfEn…Φ½E1ΦðϱSþERð0ÞÞE1�…Eng: ð3Þ
The likelihood (3) admits alternative useful forms. Let

Φ† be dual to Φ [72], then one can split Eq. (3) after mth
measurement and get p ¼ tr½ϱ̃SþERðtmÞESþERðtmÞ�, where
the recurrence relation ϱ̃SþERðtiþ1Þ ¼ EiΦ½ϱ̃SþERðtiÞ�Ei
with ϱ̃SþERð0Þ ¼ ϱSþERð0Þ defines the forward propagation
of the subnormalized density operator along the tensor
network in Fig. 3(a) and the recurrence relation
ESþERðti−1Þ ¼ Φ†½EiESþERðtiÞEi� with ESþERðtnÞ ¼ ISþER
defines the backward propagation [73] of effects in the
Heisenberg picture along the tensor network in Fig. 3(b).
This leads to a “sandwich” formula

p ¼ trfΦ½ϱ̃SþERðtm−1Þ�EmESþERðtmÞEmg; ð4Þ
which is valid for all m ¼ 1;…; n, see Fig. 3(c).
The likelihood function is to be maximized over param-

eters of the generator LSþER defining Φ ¼ expðτLSþERÞ.
Such a maximization is the most common approach in
supervised machine learning [74]. The problem is that not
every generator LSþER defines a legitimate (completely
positive and trace preserving) map Φ. To overcome this
obstacle and simplify the implementation of the gradient
ascent method [75], we use the Stinespring dilation for the
channel Φ [see, e.g., [76] and Fig. 3(c)],

Φ½ϱSþER� ¼ trA½UðHÞϱSþER ⊗ ϱAU†ðHÞ�; ð5Þ
where ϱA is a fixed pure state of the dA-dimensional ancilla
(A), dA ¼ ðdSdERÞ2, UðHÞ ¼ expð−iHτÞ is a unitary evo-
lution operator, and H is the effective Hamiltonian of
Sþ ERþ A. Equation (5) guarantees Φ is completely
positive and trace preserving provided H is Hermitian.

The ancillary operator ϱA plays the role of a renewable
subenvironment in quantum collision models [77–79] and
the memoryless (Markovian) part of the environment [61].
Becauseof theStinespringdilation, the likelihoodfunction

is now to be maximized over parameters of the effective
Hamiltonian, i.e., matrix elements Hμν ¼ hμjHjνi of H in
some computational basis fjμigdSdERdAμ¼1 . This means that
parameters Hμν are iteratively adjusted in the direction
of the gradient of the logarithmic likelihood gμν ¼∂ logp=∂Hμν. Since the likelihood function is the n-degree
monomial with respect to both operators UðHÞ andU†ðHÞ,
we readily get (see Supplemental Material [53])

gμν ¼
1

p

Xn
m¼1

tr

�
½EmESþERðtmÞEm� ⊗ IA

×

�∂UðHÞ
∂Hμν

ϱ̃SþERðtm−1Þ ⊗ ϱAU†ðHÞ þ H:c:

��
; ð6Þ

where the derivative ∂UðHÞ=∂Hμν is expressed through the
spectral decomposition H ¼ P

k λkjψkihψkj as [53]

∂UðHÞ
∂Hμν

¼
X
k;l

e−iλkτ − e−iλlτ

λk − λl
hψkjμihνjψ lijψkihψ lj: ð7Þ

Keeping in a computer memory the operators ϱ̃SþERðtiÞ and
ESþERðtiÞ for forward and backward propagations, respec-
tively, we efficiently calculate the gradient in OðnÞ steps.
Sincelogp isahighlynonlinearandnonconvexfunctionwith
respect to parameters Hμν, its optimization is accompanied
withovercoming theconvergence to local extremumsand the
slow convergence rate. In what follows, we use techniques
that were shown to perform well in such nonconvex opti-
mization problems as neural network learning [80].
Learning algorithm.—The learning algorithm, which

estimates the generator LSþER based on the training dataset

FIG. 2. Markovian embedding of the open dynamics: S
and ER experience semigroup dynamics with the generator L;
Δti ¼ ti − ti−1. The process tensor is depicted by the dotted line.

(a)

(b)

(c)

FIG. 3. (a) Forward propagation for subnormalized density
operators ϱ̃SþERðtiÞ. (b) Backward propagation for effects
ESþERðtiÞ. (c) Likelihood functional in Eq. (4) and the Stinespring
dilation (5) for Φ (dotted line).
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fEigni¼1, is as follows [81]: (1) Fix the hyperparameter dER.
Initialize the model by randomly choosing the factorized
state ϱSþERð0Þ ¼ ϱSð0Þ ⊗ ϱERð0Þ and the factorized
Hamiltonian H ¼ HSþER ⊗ IA. (2) Calculate the for-
ward-propagation operators fϱ̃SþERðtiÞgni¼1 and the back-
ward-propagation operators fESþERðtiÞgn−1i¼0 . (3) Calculate
the likelihood (4). (4) Find the spectral decomposition of
the dSdERdA-dimensional operator H and calculate
∂UðHÞ=∂Hμν via (7). (5) Estimate the gradient (6) via a
batch of summands and results of items 2–4. (6) Feed the
estimated gradient to an advanced optimization method
(e.g., the adaptive moment estimation algorithm [82]) and
get the increment ΔH. (7) Update the Hamiltonian H →
H þ ΔH and repeat items 2–6 until the likelihood con-
verges. (8) Make use of the final update of H to find the
channel Φ and the generator LSþER ¼ ð1=τÞ lnΦ.
Synthetic data generation.—We apply the learning

algorithm above to the in silico training set fEigni¼1

generated in a non-Markovian composite bipartite collision
model[83]. We consider a bipartite system Sþ S1 com-
posed of the very open qubit system under study S and one
auxiliary qubit system S1. The bipartite system successively
interacts with identical subenvironments during some
collision time (see Supplemental Material [53]). Such a
model is quite rich and describes, e.g., a qubit subject to
random telegraph noise. The benefit of this model is that
the measurement interventions into the system evolution
are explicitly taken into account (see Supplemental
Material [53]).
Validation.—We run the learning algorithm for various

values of the hyperparameter dER ¼ 1, 2, 4, 6 on the
generated training set fEigni¼1, n ¼ 105 [53]. The value
dER ¼ 1 corresponds to the best Markovian approximation
for the dynamics that is most compatible with the observed
measurement outcomes. However, the likelihood for dER ¼
1 is less than that for non-Markovian models with dER ≥ 2,
see Fig. 4(a). The greater dER, the wider the complexity
class of possible dynamics [44]. If dER ¼ dnS, then any
series of projectors fEigni¼1 can be perfectly reconstructed
with the likelihood pðfEigni¼1Þ ¼ 1, which is an ultimate
case of overfitting [see Supplemental Material [53] and
Fig. 4(b)]. The maximally achieved values of the loga-
rithmic likelihood logpðfEigni¼1Þ on the training set
monotonically increase with the increase of dER. To avoid
overfitting, we calculate the likelihood (3) on a separate
validation set of projectors fEig2ni¼nþ1. Figure 4(a) shows
that, for the data analyzed, the logarithmic likelihood
logpðfEig2ni¼nþ1Þ on the validation set increases up to
dER ¼ 2 and then diminishes. The Markovian embedding
with dER ¼ 2 is the simplest model that is the most
compatible with the observed series of measurement out-
comes. This is an expected result because we used the
synthetic data generated within a collision model with
qubits, dS1 ¼ 2. For real experimental data, the hyper-
parameter dER is tuned in such a way that the likelihood on

the validation set achieves its maximum. Tuning is rea-
sonable to perform in the vicinity of the physical estimate
for dER derived in Ref. [44].
Results.—With the estimated generator LSþER at hand,

we predict the open system dynamics ϱSðtÞ by Eqs. (1) and
(2) and compare it with the exact theoretical model (with no
measurement interventions). The missing initial state of the
effective reservoir is chosen to be the equilibrium state
trS½ϱ∞SþER� such that LSþER½ϱ∞SþER� ¼ 0. The results are
depicted in Fig. 5. Good agreement between the estimated
dynamics and the exact one demonstrates that the presented
learning algorithm actually extracts useful information
from the correlation pattern in a sequence of measurements
on the open quantum system.
The quality of the estimated dynamics is assessed in two

ways. (i) If the exact dynamics ΦSðtÞ is known, we
calculate the distinguishability between the estimated
dynamics and the exact one, then average over time
moments within the interval ½0; T�. The result is ε ¼
0.03 for T ¼ 50 (see Supplemental Material [53]). (ii) If
the exact solution is not known, the quality of the estimated
dynamics is assessed within the variational Bayesian
inference approach. This approach yields ε ¼ 0.05 for

(a) (b)

FIG. 4. (a) Logarithmic likelihood per measurement vs dimen-
sion of the effective reservoir for the training set fEigni¼1 (solid
line) and the validation set fEig2ni¼nþ1 (dashed line). Theoretical
prediction for the generated data is depicted by a dotted line.
(b) Ultimate overfitting with the exponentially big effective
reservoir composed of the projectors observed, swap gates,
and the shift operator i → i − 1, 1 → n for subenvironments.

FIG. 5. Bloch vector components hσiðtÞi ¼ tr½ϱSðtÞσi� vs di-
mensionless time for the exact dynamics (solid line) and the
learning-based prediction (dotted line).
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T ¼ 50 and the standard deviation 0.025 for matrix
elements of the estimated density operator ϱSðTÞ [53].
The average error in estimating the discretized process

fΦSðtiÞgKi¼1 scales as 1=
ffiffiffi
n

p
and is essentially independent

of K in the proposed algorithm (see Supplemental Material
[53]) because all the channels fexpðLEþERΔtiÞgKi¼1 in the
process tensor in Fig. 1 are defined by a single generator
LSþER independent of time moments ftigKi¼1 (parameter
sharing). On the other hand, the full process tomography
yields the error scaling as

ffiffiffiffiffiffiffiffiffi
K=n

p
with the same total

number of measurements n [53]. Therefore, the proposed
method is

ffiffiffiffi
K

p
times more efficient as compared to the full

process tomography for large K.
Importantly, the formalism of Markovian embedding is

compatible with a control operation on system S, say, a
quick unitary transformation ϱSðt0Þ → VϱSðt0ÞV† at time
moment t0. After the operation, ϱSðtÞ ¼ trERfexp½ðt − t0Þ×
LSþER�ϱSþERðt0Þg. The result is in good agreement with the
exact dynamics (Fig. 6), thus opening an avenue toward
efficient control and manipulation of non-Markovian
quantum systems. In contrast, the conventional process
tomography cannot take such a control operation into
account: its prediction ΦSðtÞΦSðt0Þ−1½VϱSðt0ÞV†� differs
from ϱSðtÞ because of the system-environment correlations
[53,84–86], see Fig. 6.
Conclusions.—We proposed a method to learn the

Markovian embedding for non-Markovian quantum evo-
lution. The primary information needed is the outcomes of
successive projective measurements on the system.
Correlations in the measurements at different times indicate
non-Markovianity and allow for the reconstruction of
memory effects. The decay of correlations between

spaced-in-time measurements enables the reconstruction
of relaxation effects. Both memory and relaxation phe-
nomena are taken into account by the generator LSþER
acting on the system and the effective reservoir of finite
dimension. Our algorithm estimates LSþER and does not
exploit the full tomography of either states or processes.
Learnability of the algorithm is tested on a dataset for the
non-Markovian qubit dynamics. The presented approach
enables one to take control on the system into consider-
ation, which is impossible with conventional tomographic
techniques.
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