
 

Local Spectroscopies Reveal Percolative Metal in Disordered Mott Insulators
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We elucidate the mechanism by which a Mott insulator transforms into a non-Fermi liquid metal upon
increasing disorder at half filling. By correlating maps of the local density of states, the local magnetization,
and the local bond conductivity, we find a collapse of the Mott gap toward a V-shaped pseudogapped
density of states that occurs concomitantly with the decrease of magnetism around the highly disordered
sites but an increase of bond conductivity. These metallic regions percolate to form an emergent non-Fermi
liquid phase with a conductivity that increases with temperature. Bond conductivity measured via local
microwave impedance combined with charge and spin local spectroscopies are ideal tools to corroborate
our predictions.
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Introduction.—The metal-to-insulator transition (MIT)
driven by increasing disorder and the effect of Coulomb
interactions on this transition has been a problem of
fundamental interest. It is well known that disorder can
create a transition from a metallic to an insulating state in
both 2D and 3D due to localization effects. In the absence
of interactions, all states are localized in one and two
dimensions for arbitrarily small potential disorder, while in
three dimensions the MIT occurs at a finite critical disorder
strength [1,2]. In the presence of Coulomb interactions,
perturbative calculations show an enhancement of locali-
zation in all dimensions [3]. However, the idea that disorder
can create an insulator-to-metal transition (IMT) is rela-
tively new. The first hint of an IMT in two dimensions due
to long-range Coulomb interactions came from the renorm-
alization group (RG) analysis by Finkel’stein [4–6], which
showed that the critical indices for the correlation length
and timescales become frequency dependent and the RG
flows take the system to a strong coupling fixed point. This
was followed by a RG analysis of a two-parameter theory
for long-range Coulomb interactions and disorder in the
limit of large number of valleys that found a quantum
critical point for the IMT in two dimensions. This theory
was successful in explaining experimental data on thermo-
dynamics and transport in high-mobility silicon metal-
oxide-semiconductor field-effect transistors [7].
In the opposite limit of strong on-site repulsion for

commensurate filling, we have several examples of Mott
insulators [8] in narrow band systems in which electrons are
localized due to strong repulsion with an energy gap to
excitations. The discovery of Mott insulators that can be
driven into metallic or superconducting states upon doping
has opened the field of competing charge-ordered, spin-
ordered, nematic, pseudogap, superconducting, and strange

metallic phases. To understand the emergent behavior, it is
important to separate out the effects of increasing disorder
from adding or removing carriers. In this regard, gate
tuning is a useful knob that tunes only the chemical
potential without necessarily adding disorder, as distinct
from chemical doping.
Previous experiments have observed a power-law sup-

pression of the local density of states upon doping the Mott
insulator Sr3Ir207 with Ru substitution for Ir [9], which
indicates that new states are added at the chemical potential.
Ru has been experimentally shown to be an isovalent
substitution in Sr3Ir207, so the IMT in this system may be a
good example of a disorder-induced transition. Transport
measurements help determine whether the states are local-
ized or extended, and indeed corroborate a metallic state
with a finite resistivity extrapolated to T ¼ 0 in the Ru
substituted compounds. Theoretical methods ranging from
inhomogeneous mean field theory [10], dynamical mean
field theory (DMFT)-based approaches [11–17], quantum
Monte Carlo [18–20], and exact diagonalization studies
[21] of the Anderson-Hubbard model support the presence
of insulator-metal transition. However, the mechanism
behind this transition and the nature of the emergent
metallic phase remain unclear. Current research aims to
develop a local picture that elucidates the nature of this
pseudogap transition that is the subject of intense high
resolution experiments in correlated materials [22].
In this Letter, we investigate the tension between two

localizing tendencies: Mott repulsion and Anderson locali-
zation in two dimensions at half filling in the Anderson-
Hubbard model, and their roles in driving quantum phase
transitions. We investigate the correlations among the local
maps of the magnetization, density of states, and the local
bond conductivity, for a given realization and strength of
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disorder. We depict our results in a schematic phase
diagram in the interaction-disorder plane in Fig. 1(a) that
is based on our inhomogeneous mean field results for the
Anderson-Hubbard model. It shows that while disorder and
interactions independently enhance localization and pro-
mote an insulating state, acting together results in a novel
metallic phase sandwiched between the Mott insulator at
low disorder and a correlated Anderson insulator at high
disorder.
Specifically, our two key new results are as follows.
(1) Our earlier study [10] showed that disorder adds

spectral weight within the Mott gap resulting in a V-shaped
density of states [also shown in Fig. 1(d)]. Here we
calculate the dc conductivity and show that, remarkably,
the conductivity increases with increasing fraction of
disordered sites and also increases with temperature for
a fixed disorder fraction [Fig. 1(g)]. Interestingly, this
emergent metallic phase shows a non-Drude response in
the optical conductivity [Fig. 1(f)].
(2) Local dc conductivity profiles show the formation of

conducting bonds in regions surrounding disorder sites and
the emergence of percolating metallic networks.
Model.—The Hamiltonian for the Anderson-Hubbard

model is given by

H¼−t
X

hi;ji;σ
ðc†iσcjσþH:c:ÞþU

X

i

n↑ni↓þ
X

i;σ

ðVi−μÞniσ;

ð1Þ

where c†iσðciσÞ is the electron creation (annihilation) oper-
ator at site i with spin σ, and niσ ≡ c†iσciσ . t represents
the hopping amplitude between nearest neighbor sites,
and U is the on-site electron-electron repulsion. Vi is the
on-site disorder potential, treated as binary-alloy disorder:
p fraction of randomly chosen sites have Vi ¼ V, and
1 − p fraction of sites have Vi ¼ 0. The chemical potential
μ is adjusted to achieve global half filling. The Hubbard
interaction term U is treated at the Hartree-Fock level in
terms of the site-dependent spin and charge density fields.
This numerical method has the advantage that it treats
the disorder potential exactly, and thus captures the
localization physics due to the inhomogeneous potential
profile accurately [23].
Global properties.—With increasing disorder, the

DOS NðωÞ shows an evolution from a Mott gapped
insulator to a gapless phase leading to a V-shaped pseu-
dogap at the chemical potential [Figs. 1(d) and 1(e)] [9,10].
To get some idea of whether these in-gap states are
localized or extended, we plot the inverse participation
ratio ðIPRÞ≡P

riα jψαðriÞj4 ∝ ξ−2loc, where ψα is the real-
space wave function associated with eigenenergy α and ξloc
is its associated localization length (zero IPR value corre-
sponds to infinitely delocalized state). In-gap states at low
disorder fraction are bound states that are localized, as
shown by the large value of their IPR shown in Fig. 1(b). As
disorder regions grow and extend across the system, energy
eigenstates become increasingly delocalized, depicting a
transition from a Mott insulator to a metallic state. The IPR
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(d) (e)

(f) (g)
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FIG. 1. (a) Interaction-disorder U–V phase diagram in units of the hopping t. x axis captures Anderson localization, y axis is the Mott
MIT, and novel metal at intermediate energies. Relative points in phase space where development of conductivity is analyzed to create
Fig. 3(e) (see Fig. S4 in Supplemental Material [23]). Dashed lines represent cuts (U ¼ 4.0t andU ¼ 0, V ¼ 3.5twith increasing binary
disorder fraction) along which the inverse participation ratio (IPR) is evaluated. (b),(c) IPR ∝ ξ−2loc, where ξloc is the extent of the energy
eigenstate. (d) Full DOS and (e) states about the Fermi energy offset vertically for clarity (right). Spectral data averaged over 40 disorder
realizations for 40 × 40 square lattice with broadening δ ¼ 0.0075t. (f) Optical conductivity σðωÞ in units of (e2=ℏ) and ωσðωÞ (inset) at
various disorder fractions. Dotted black line in inset highlights a finite dc conductivity for higher disorder, or, correspondingly, a linear
behavior of ωσðωÞ. (g) dc conductivity as a function of temperature for 30 × 30 lattice at U ¼ 4.0t and V ¼ 3.5t. The data in (f) and (g)
are averaged over 8 disorder realizations.
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and derivative results that follow agree with previously
analyzed metallic phases and are robust in the infinite
system size limit as seen by finite size scaling provided in
Supplemental Material [Fig. S3(a)] [23].
To understand this emergent phase with a finite density

of states at the chemical potential, we evaluate the optical
conductivity σðωÞ, shown in Fig. 1(f). Starting with a finite
gap at low disorder, we observe the gap closing with
increasing disorder, consistent with previous theoretical
studies [24,25]. As the system develops an increasing low-
frequency conductivity, the behavior of σðωÞ is non-Drude,
with a peak in the conductivity at a nonzero frequency that
moves toward lower frequency with increasing disorder.
Rather remarkably, we observe a nonzero dc conductivity
that grows with increasing disorder fraction as depicted in
low-frequency behavior of ωσðωÞ in the inset in Fig. 1(f).
Beginning at 30%, the linear behavior of σðωÞ allows us to
extrapolate a nonzero dc conductivity σdc [Fig. 1(g)]. A
finite σdc indicates the onset of a metallic phase in which
the conductivity grows with increasing disorder. Similar
enhancement of the conductivity was found for uniform
box potential disorder ½−V;þV� [24–26], indicating that
the emergence of the metallic phase is ubiquitous.
Local properties.—Insight into how metallicity

arises as a result of the competition between disorder
and interactions is captured by the distribution of local
quantities: antiferromagnetic (AFM) order parameter
hm†

i i≡ ð−1ÞxiþyihSzi i, LDOS, and transport characteristics
σμμij , as we discuss below.

(a) Local magnetization. For positive potential V, it
becomes energetically unfavorable to occupy the disorder
sites, leading to a reduction in the local moment and charge
density on disorder sites. The bimodal charge density
distribution shown in Fig. 2(a) depicts disorder sites with
relatively fixed mean occupation while nondisordered sites
slowly transition away from unit filling, initially only
impacting nearest neighbor sites. The spin ordering dis-
tribution echoes this nearest neighbor to disorder behavior.
In Fig. 2(c), the distribution of AFM order is sharply
peaked close to the maximum value at low disorder
fractions, and becomes broader and shifts toward zero as
the fraction increases, indicating a transition from a uni-
form AFM phase toward a nonuniform paramagnetic
phase. Figure 2(c) shows a reduction of the local moment
on neighboring sites as the occupation increases beyond
unit filling: Sites are screened from the effects of disorder at
low disorder fraction, seen by the disparate peak and
slightly perturbed sharp AFM profile for 15%. As the

(b)

(d)(c)

(a)

FIG. 2. (a)–(c) Local charge density, conductivity, and anti-
ferromagnetic (AFM) order parameter [hm†

i i≡ ð−1ÞxiþyihSz;ii]
as a function of disorder fraction. Data averaged over 40 random
disorder realizations at V ¼ 3.5t, U ¼ 4.0t, T ¼ 0.01t for 40 ×
40 lattice. (b) Local dc conductivity distribution normalized by
the total number of sites N, extrapolated from the low-frequency
conductivity. (d) Site disorder with Gaussian broadening and its
correlation with local staggered magnetization. Shading shows
the standard deviation.

(a) (b)

(c) (d)

(e)

FIG. 3. (a)–(d) Inhomogeneity in LDOS and dependence on
hm†

i i2. Data collected from 40 random disorder realizations on a
40 × 40 lattice, ðU;VÞ ¼ ð4.0t; 3.5tÞ. (e) Average local bond
conductivity as a function of hm†

i i taken from 8 disorder
realizations for 15%, 25%, 35%, 45% on lattices of sizes
26 × 26. V is not strong enough to eliminate ordering in the
red curve (U ¼ 4.0t; V ¼ 2.3t), so the local AFM remains highly
ordered ≥ 0.6. See Fig. S4 for full conductivity distribution vs
ordering [23].
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density of disorder in local regions grows, more charge
occupies neighboring sites and neutralizes spin ordering.
We correlate the magnetic ordering with local disorder
density by smoothing the original disorder potential to
create an effective disorder profile [Fig. 2(d)]. At low
fraction, hm†

i i2 decreases linearly with the degree of
disorder, so initially Vi only has localized effect on
interacting sites. As the disorder throughout the full lattice
grows, the impact becomes increasingly nonlocal where
sites away from disorder become paramagnetic.
(b) Local bond conductivity. The distribution of local

conductivities [current-current correlator between bond
ði; jÞ and all ðk; lÞ bonds] in Fig. 2(b) shows that mostly
clean systems have a local dc conductivity distribution that
is sharply peaked near zero, as expected for a Mott
insulator. As disorder increases, the distribution broadens
and the mean increases. Thus bonds become increasingly
conducting and sites increasingly paramagnetic as the
system becomes more disordered.
(c) Inhomogeneous LDOS. The magnetization and con-

ductivity hint at an inhomogeneous nature of the emergent
disorder-driven metal. We ask how does this local non-
uniformity promote charge transport in a Mott insulator.
The first insight into how a metal emerges with increasing

disorder comes from local spectroscopic analysis. Figure 3
depicts the local density of states averaged over sites with
different ranges of magnetic order. For low disorder fraction
[Fig. 3(a)], regions with high AFM order exhibit a Mott gap
around the Fermi energywith almost no states belowEF. For
moderate disorder, Figs. 3(b) and 3(c) show that Mott
physics is preserved in magnetically ordered regions, while
increasingly disordered regions have enhanced spectral
weight within the Hubbard gap with the formation of a
V-shaped pseudogap. Such spectroscopic dependence on
disorder has been observed experimentally in Mott insulat-
ing materials, where the pseudogap behavior is enhanced
near impurity atoms [9].
(d) Correlation between local moment and conductivity.

Extending the previous discussion on the correlation of
eigenstate delocalization and closing spectral gap with
reduced magnetic ordering to low-frequency conductivity
in Fig. 3(e), we show that transport and magnetic order are
anticorrelated: The less magnetically ordered the region,
the more conducting. Introducing few disorder sites
decreases the magnetization and drives charge mobility
on these sites; see Fig. 3(e). Maximal conductivity occurs at
nonzero magnetic ordering in each curve, suggesting that
weak correlations are crucial for promoting mobility.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. (a)–(c) Real-space profile for two representative disorder realizations (15%, 35%) and corresponding charge density and AFM
magnetization for a 30 × 30 square lattice and U ¼ 4.0t, V ¼ 3.5t. (d) Local staggered magnetization map superimposed with local
bond conductivities (red lines), obtained at low frequency and low temperature (ω ¼ 0.01t, T ¼ 0.005t) for two disorder realizations.
Lines in 35% (right) are roughly 10–20 times more conducting to similar intensities in 15% (left). (e) Recreation of (d) with interactions
turned off and identical disorder profile. (f) Shortest distance path for conductivity network constructed from the conductivity profile.
Edges between sites ði; jÞ assigned weight proportional to 1=σij. Path weight/distance is division is in arbitrary units but proportional to
N2=σij, normalized to minimum path weight (50% for interacting, 5% for noninteracting cases). Constructed from L paths for each
L × L random disorder realization (L ¼ 30, and 10 disorder profiles).
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In Fig. 4 we present a real-space picture of two
representative disorder realizations at 15% and 35% to
show how disorder breaks down an initial Mott insulating
system. Figures 4(a)–4(c) provide a spatial map of the
random disorder potential and its effect on charge and spin.
To relate disorder and interactions with their

effects on the local magnetization and bond conductivity
in real space, we overlay the magnetization profile for a
representative disorder realization with the most con-
ducting bonds (shown in red) in Fig. 4(d). The contrast
with the noninteracting system [Fig. 4(e)] is remarkable:
While disorder reduces conduction as expected in the
noninteracting case, the behavior is quite the opposite
for the interacting system, where one observes pockets
-of enhanced conductivity localized around a small fraction
of disorder sites [p ¼ 15%, Fig. 4(d), left]. These pockets
extend to a percolating cluster at larger disorder fraction
[p ¼ 35%, Fig. 4(d), right].
(e) Formation of percolating metal. To exhibit the

percolative nature of transport, we construct a network
with each site as a node and ρij ¼ 1=σij as the bond
weights. The minimum series resistance ρmin to connect the
two ends of the system by the shortest path is obtained by a
weighted path analysis of the conductivity graph [Fig. 4(f)].
The addition of 10% disorder leads to a factor of 2 decrease
ρmin while adding 30% disorder leads to a decrease by
nearly 2 orders of magnitude. Above 30%–35% disorder
the cost remains constant as expected above the percolation
threshold. The percolative nature of disorder we have
characterized adds to current theoretical descriptions
[27–30] and experimental characterization of disorder in
materials [31].
In conclusion, our results capture the previously unex-

plored local properties of the intermediate pseudogapped
metallic phase in the half-filled Anderson-Hubbard model.
This work illuminates the interplay between disorder and
interactions in the simplest fermionic model and provides
an avenue for understanding how non-Fermi liquid behav-
ior arises at the microscopic level.
Our model, which does not include long-range Coulomb

interaction, is particularly applicable to disordered systems
with isovalent substitutions. The suppression of magnetism
in regions near dopants, and subsequent development of in-
gap states, which we observe in our results, are still
expected in the presence of long-range interaction.
Although our work does not address the effects of
Coulomb gap on the emergent percolation network, we
speculate that these metallic channels, identified in our
local conductivity maps, play an important role in the low
energy transport properties of the system.
The conductivity maps provide predictions for increas-

ingly powerful spatially resolved spectroscopic techniques
such as microwave impedance microscopy, four-probe
STM, and local-conductivity (LC) AFM, which has only
recently been used to study local conductivity profiles on

100 nm down to atomic resolution [32–34]. Recent break-
throughs in cold atom experiments now allow for resistivity
and optical conductivity experiments, where the highly
tunable nature of these experiments provides an ideal
testing environment for the results we present here [35].
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Note added.—Recently, we learned of a similar work
developing spatial resistivity maps using statDMFT [36].
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