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A Luttinger liquid (LL) describes low energy excitations of many interacting one dimensional systems,
and exhibits universal response both in and out of equilibrium. We analyze its behavior in the non-
Hermitian realm after quantum quenching to a PT -symmetric LL by focusing on the fermionic single
particle density matrix. For short times, we demonstrate the emergence of unique phenomena, characteristic
to non-Hermitian systems, that correlations propagate faster than the conventional maximal speed, known
as the Lieb-Robinson bound. These emergent supersonic modes travel with velocities that are multiples of
the conventional light cone velocity. This behavior is argued to be generic for correlators in non-Hermitian
systems. In the long time limit, we find typical LL behavior, extending the LL universality to the
nonequilibrium, non-Hermitian case. Our analytical results are benchmarked numerically and indicate that
the dispersal of quantum information is much faster in non-Hermitian systems.
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Introduction.—Non-Hermitian quantum mechanics has
provided us with a plethora of interesting phenomena,
investigated both theoretically and experimentally. These
include spontaneous PT -symmetry breaking, nonunitary
dynamics, encircling and manipulating exceptional points,
unidirectional invisibility, complex Bloch oscillations, and
even topological effects [1–11], to mention a few. However,
the common theme behind these studies is the underlying
effective single particle picture, while excursions to the
quantum many-body realm are scarce [12].
By now, Hermitian quantum many-body physics in one

spatial dimension is well understood thanks to the
available analytical and numerical methods [13,14], both
in and out of equilibrium. In particular, many of these
systems realize Luttinger liquids (LLs), including
bosonic, fermionic, spin etc., models, irrespective of their
statistics and microscopic details [13–15]. Therein, the
Fermi-liquid description breaks down and the elementary
excitations are bosonic collective modes. This fraction-
alization is manifested by the universal noninteger power
law decays in almost all correlation functions [13].
Furthermore, when taken out of equilibrium, for example
following a quantum quench, the evolution of such
Hermitian systems is always unitary. The changes of
system parameters cause the emission of quasiparticles
carrying correlations that propagate across the system
with a certain velocity whose maximum value is given by
the Lieb-Robinson bound [16]. The existence of a maxi-
mum speed implies a light cone spreading of correlations
[17] with only subsonic mode velocities.

Therefore, it comes as a natural question whether any of
the LL universality and light cone structure survive under
non-Hermitian conditions. This motivated us to explore the
fate of LLs after a quantum quench to a PT -symmetric
non-Hermitian system. We find that the long time limit
exhibits LL behavior with noninteger power law decays,
thus extending LL universality to the nonequilibrium non-
Hermitian realm.
The short time behavior, on the other hand, differs

drastically from that in the Hermitian realm [18]. On top
of the usual light cone [16], new supersonic modes appear
and travel with velocities that are multiples of the light cone
velocity. The origin of the supersonic modes is related to an
effective long range Hamiltonian, governing the time
evolution, for which such supersonic modes might be
expected [19]. We argue that this emergent phenomenon
is characteristic to all correlation functions in non-
Hermitian systems. These findings are tested numerically
on a non-Hermitian variant of the XXZ Heisenberg model.
Its density correlation function reveals three distinct light
cones, in perfect agreement with bosonization.
PT -symmetric LL.—The non-Hermitian LL

Hamiltonian we study is given by

H ¼
X
q≠0

vjqjb†qbq þ
ig2jqjΘðtÞ

2
½bqb−q þ bþq bþ−q�; ð1Þ

with v being the bare “sound velocity”, and b†q the creation
operator of a bosonic density wave. The interaction g2 is
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changed from zero to a nonzero value at t ¼ 0. Although
the Hamiltonian is non-Hermitian, its spectrum remains
real [20] as ωq ¼ ṽjqj in the presence of imaginary

interaction, with renormalized velocity ṽ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ g22

p
.

This falls into the category of PT -symmetric non-
Hermitian systems [1–4]: Eq. (1) satisfies the antiunitary
(generalized PT ) symmetry [20] as the combination of
time reversal, i → −i and phase transformation bq → ibq,
bþq → −ibþq . The Hamiltonian does not commute with the
generators of each symmetry independently, but only with
their product. This is to be contrasted to the Hermitian case,
obtained by the replacement ig2 → g2 in Eq. (1), in which
case the sound velocity is [13] v− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − g22

p
. In both

cases, the system is stable for jg2j < v, as we show below.
A distinct version of a non-Hermitian LL was investigated
in Ref. [21].
In the present Letter, we are interested in the time

evolution of a LL following a sudden quantum quench.
Initially, the system is prepared in the noninteracting
ground state jϕ0i (i.e., the vacuum for the b bosons),
and time evolved with the non-Hermitian Hamiltonian,
Eq. (1) as jϕðtÞi ¼ e−iHtjϕ0i. [22]. In the Hermitian realm,
such systems were studied exhaustively [18,23–27].
In the fermionic realization of non-Hermitian physics,

the ensuing nonequilibrium dynamics can be captured by
the fermionic one-particle density matrix. The original
fermion field decomposes to right-going and a left-going
parts [13,14] as ΨðxÞ ¼ eikFxRðxÞ þ e−ikFxLðxÞ, therefore
it is enough to investigate, for example, the correlator of the
right movers, defined as

Grðx; tÞ≡ hϕðtÞjRþðxÞRð0ÞjϕðtÞi
hϕðtÞjϕðtÞi ; ð2Þ

describing excitations around the right Fermi momentum,
k ≈ kF. The right-moving field, RðxÞ, is expressed in
terms of the LL bosons as [13] RðxÞ ¼ ðηr=

ffiffiffiffiffiffiffiffi
2πα

p Þ×
exp ½iϕrðxÞ�, where ηr denotes the Klein factor, and
ϕrðxÞ ¼

P
q>0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=jqjLp

eiqx−αjqj=2bq þ H:c: with α an
ultraviolet regulator. Due to the nonunitary time evolution
[12,28], it is compulsory to treat carefully the denominator
arising in Eq. (2).
The norm of the wave function.—To warm up, let us

start by evaluating the denominator in Eq. (2), which is
NðtÞ≡ hϕðtÞjϕðtÞi ¼ hϕ0jeiHþte−iHtjϕ0i, which would
be 1 in the Hermitian case. Calculating NðtÞ is accom-
plished by realizing that the operators appearing in the
Hamiltonian,K0ðqÞ¼ðbþq bqþb−qbþ−qÞ=2,KþðqÞ¼bþq bþ−q
and K−ðqÞ ¼ bqb−q are the generators of SU(1,1) Lie
algebra [29]. Exploiting a faithful 2 × 2 matrix representa-
tion of the SU(1,1) generators [30,31], the product of the
time evolution operators is recast as

eiH
þte−iHt ¼

Y
q>0

eCþðq;tÞKþðqÞeC0ðq;tÞK0ðqÞeC−ðq;tÞK−ðqÞ: ð3Þ

When taking its expectation value with the bosonic vac-
uum, the first and last exponentials containing KþðqÞ and
K−ðqÞ are Taylor expanded, and only the zeroth order term
remains finite, all other terms containing powers of bqb−q
vanish when acting on the vacuum. Then, the expectation
value of Eq. (3) reduces to

Q
q>0 exp½C0ðq; tÞ=2�. This is

evaluated to yield NðtÞ ¼ Q
q>0 ṽ

2=½ṽ2 − 2g22sin
2ðωqtÞ�,

which indeed gives one for t ¼ 0 [32]. Interestingly, the
non-Hermitian formulation remains valid only for g2 < v,
similarly to the Hermitian case, even though the renormal-
ized sound velocity does not vanish for v ¼ jg2j. The norm,
NðtÞ should always be non-negative. However, with
increasing g2, it first diverges and becomes negative for
jg2j > v. This happens because after the quench, the time
evolved wave function leaves the space of normalizable
wave function, which is signaled by the total norm
becoming negative [33,34]. This behavior can be associated
with the dynamical manifestation of the equilibrium insta-
bility found in related systems [35].
The numerator of the Green’s function.—The two

exponentials in the right-moving fields are merged using
standard tricks [36] and the time evolution of this operator
is then evaluated using the identity

hϕ0jeiHþte−i½ϕrðxÞ−ϕrð0Þ�e−iHtjϕ0i
¼ hϕ0jeiHþte−iHteiHte−i½ϕrðxÞ−ϕrð0Þ�e−iHtjϕ0i
¼ hϕ0jeiHþte−iHte−i½ϕrðx;tÞ−ϕrð0;tÞ�jϕ0i: ð4Þ

This allows us to formally define a pseudo-Heisenberg-type
time evolution for the operators as bqðtÞ ¼ eiHtbqe−iHt,
though this is not the physical Heisenberg time evolution as
that would involve the eiH

þt operator to the front. The
resulting pseudo-Heisenberg equation of motion is solved
from ∂tbq ¼ i½H; bq� and ∂tbþ−q ¼ i½H; bþ−q�, which are not
related to each other by Hermitian conjugation. This
equation of motion is solved as

bqðtÞ ¼ uqðtÞbq þ vqðtÞbþ−q; ð5aÞ

bþ−qðtÞ ¼ u�qðtÞbþ−q − vqðtÞbq; ð5bÞ

and juqðtÞj2 þ jvqðtÞj2 ¼ 1 [37], and the canonical com-
mutation relation, ½bqðtÞ; bþq ðtÞ� ¼ 1 is preserved. Finally,
the time-dependent pseudo-Bogoliubov coefficients are

uqðtÞ ¼ cosðωqtÞ −
iv
ṽ
sinðωqtÞ; vqðtÞ ¼

g2
ṽ
sinðωqtÞ; ð6Þ

which are related to the Hermitian Bogoliubov coefficients
[25] through the g2 → ig2 change.
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The two time evolution operators, acting on the bra
vector, are then rewritten using Eq. (3) as

hϕ0jeiHþte−iHt ¼ hϕ0j
Y
q>0

eC−ðq;tÞK−ðqÞþC0ðq;tÞ
2

¼ NðtÞhϕ0j
Y
q>0

eC−ðq;tÞK−ðqÞ: ð7Þ

Therefore, the denominator appears also in the numerator
and drops out from the final expression. Using again
the faithful representation of the SU(1,1) algebra, we get
C−ðq; tÞ ¼ 2uqðtÞvqðtÞ=½juqðtÞj2 − jvqðtÞj2�.
Supersonic modes.—In order to calculate the vacuum

expectation value, we normal order the pseudo-Heisenberg
time evolved bosonic operators in the Green’s function.
Using the pseudo-Heisenberg time evolution from Eq. (5),
we obtain

e−i½ϕrðx;tÞ−ϕrð0;tÞ� ¼ e−iϕ
þðx;tÞe−iϕ−ðx;tÞecðx;tÞ; ð8Þ

where ϕþðx; tÞ ¼ P
q>0

ffiffiffiffi
2π
qL

q
½ðe−iqx − 1Þu�qðtÞbþq þ

ðeiqx − 1ÞvqðtÞbþ−q�, ϕ−ðx; tÞ ¼ P
q>0

ffiffiffiffi
2π
qL

q
½ðeiqx − 1Þ×

uqðtÞbq − ðe−iqx − 1ÞvqðtÞb−q�, cðx; tÞ ¼ P
q>0

π
qL jeiqx −

1j2ð2jv2qðtÞj − 1Þ. In the Hermitian case, the calculation
would end here [24], which contains all equilibrium and
quench induced correlations, since C−ðq; tÞ would be zero.
For the non-Hermitian quench, by combining Eqs. (7) and
(8), the three exponentials are again Taylor expanded
to calculate the required vacuum expectation value. The
e−iϕ

−ðx;tÞ term gives one when acting on the vacuum. The
expansion of the eC−ðq;tÞK−ðqÞ contains the same powers of
bq and b−q due to the very definition of K−ðqÞ. Therefore,
in order to have a nonzero expectation value, only those
terms contribute from the expansion of e−iϕ

þðx;tÞ, which
also contain the same powers of bþq and bþ−q. This finally
gives after some tedious algebra [38]

Grðx; tÞ
G0

rðxÞ
¼ exp

�
−
8π

L

X
q>0

g22sin
2ðqx=2Þsin2ðωqtÞ

q½ṽ2 − 2g22sin
2ðωqtÞ�

�
; ð9Þ

where G0
rðxÞ ¼ i=½2πðxþ iαÞ� denotes the free fermion

propagator, L the system size. This final result differs from
the outcome of a Hermitian quantum quench by the
denominator in the exponent, but as we discuss below, it
has profound consequences for the time evolution and light
cone structure.
The exponent of the Green’s function is Taylor expanded

in terms of sin2ðωqtÞ. Then, the various q integrals are
performed and the series is resumed, yielding

Grðx; tÞ ¼ G0
rðxÞ exp

��
1 −

ṽ
v−

�
dðx; 0Þ

− 2
X∞
n¼1

ṽ
v−

�
−g22

v2 þ ṽv−

�
n

dðx; ntÞ
�
; ð10Þ

where dðx;tÞ¼ 1
4
lnf(½α2þðx−2ṽtÞ2�½α2þðxþ2ṽtÞ2�)=

½ðα2þ4ṽ2t2Þ2�g using the e−αjqj cutoff in Eq. (9) [39].
For 2ṽt ≫ x, the Green’s function becomes completely

time independent, similar to the Hermitian quench [18].
The characteristic noninteger power law decay of LL is
observed as Grðx; t → ∞Þ ∼ jxj−ṽ=v− , and the exponent is
smaller than for a Hermitian quench [25] with the same
interaction strength g2. This establishes the LL universality
also in the nonequilibrium and non-Hermitian case.
On the other hand, for 2ṽt ≪ x, supersonic modes that

propagate faster than the sound velocity ṽ, emerge and the
corresponding velocities are integer multiples of 2ṽ, even
though H itself is local [16]. Its origin is traced back to the
eiH

þte−iHt factor in Eq. (4). When merging the exponentials
into a single one, a series of nested commutators arise
from the Baker-Campbell-Hausdorff formula [31] due to
½H;Hþ� ≠ 0, and the resulting exponent, interpreted as an
effective Hamiltonian, becomes increasingly nonlocal and
long range, therefore there is no obvious bound of the
propagation speed of correlations in non-Hermitian sys-
tems. This parallels to the appearance of supersonic modes
in Hermitian long range systems [19]. These are manifested
in the denominator of Eq. (9): upon expanding it in Taylor
series in sin2ðωqtÞ, the resulting expression involves terms
that oscillate at frequencies 2ωq; 4ωq; 6ωq;…, leading to
the propagation velocities 2nṽ. However, the sharpness of
the supersonic light cones at x ¼ 2nṽt decreases with n due
to the g2n2 factor in Eq. (10), as shown in Fig. 1. By
neglecting the C−ðq; tÞ term, arising from ½H;Hþ� ≠ 0,
only a single conventional light cone would appear.

0 20 40 60 80 100
-30

-25

-20

-15

-10

-5

0

n=3
n=2

n=1

FIG. 1. The single particle density matrix is plotted from
Eq. (10) for g2=v ¼ 0.8 (blue) and 0.95 (red) line with
x ¼ 100α. The n ¼ 1 light cone from the sum in Grðx; tÞ
corresponds to the conventional light cone with 2ṽ velocity,
while the first two supersonic features are denoted by n ¼ 2 and 3
with 4ṽ and 6ṽ velocity, respectively.
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We argue that supersonic modes appear generically
during the time evolution of any correlator of local
observables Ox in non-Hermitian systems. Consider the
correlation function χðx; tÞ≡ hϕðtÞjOxO0jϕðtÞi=NðtÞ as

χðx; tÞ ¼ hϕ0jeiHþte−iHtOxðtÞO0ðtÞjϕ0i=NðtÞ; ð11Þ

where OxðtÞ ¼ eiHtOxe−iHt is the pseudo-Heisenberg time
evolved operator. Due to eiH

þte−iHt, supersonic modes are
expected from the argument below Eq. (10). Indeed, using
Eq. (7), it is rewritten as

χðx; tÞ ¼ hϕ0je
P

q>0
C−ðq;tÞK−ðqÞOxðtÞO0ðtÞjϕ0i: ð12Þ

The C−ðq; tÞ function contains 1=½ṽ2 − 2g22 sin
2ðωqtÞ�, and

when the expectation value is taken, this will inevitable
alter the propagation velocity in χðx; tÞ by even integer
multiples of ṽ, similarly to the single particle density matrix
in Eq. (10). Supersonic modes follow from the proper
Heisenberg picture using the equation of motion method
[40]. While supersonic modes were also seen in a non-
Hermitian, noninteracting system [42], our results imply
that these are expected on general ground in non-Hermitian
dynamics.
Numerics for lattice fermions.—In order to test our

results, we study a simple lattice model with imaginary
interactions, which is not PT symmetric, albeit the low
energy part of its spectrum can be considered effectively
real, while some higher modes develop significant imagi-
nary parts, which would only influence the long time
dynamics. The Hamiltonian is

H ¼
XN
m¼1

J þ iJz
2

ðcþmþ1cm þ H:c:Þ − i
Jzπ
2

nmþ1nm; ð13Þ

where cs are fermionic operators and N the number of
lattice sites, nm ¼ cþmcm and Jz denotes the nearest neigh-
bor interaction and the system is half filled. Its low energy
excitations are sound waves with sound velocity ṽ ≈ J þ
ðπ2=8 − 1ÞJ2z=J after setting the lattice constant to one,
which allows us to identify g2 ∼ −Jz=1.4 for small Jz,
while v ¼ J. Let us note, that the Hermitian version
[iJz → Jz in Eq. (13)] is Bethe-Ansatz solvable [13] with
sound velocity v− ≈ J þ ð1 − π2=8ÞJ2z=J, in perfect agree-
ment with the bosonization discussion following Eq. (1).
The main merit of introducing Jz into the hopping as well is
that it eliminates the g4 process which is only responsible
for velocity renormalization [13] but does not induce
noninteger power law decay of correlation functions, and
makes the velocity real [13] for the non-Hermitian case. Its
energy spectrum at half filling obtained with exact diag-
onalization is shown in Fig. 2.
We consider numerically a quench dynamics, when the

system is prepared initially in the noninteracting, Jz ¼ 0

ground state of Hamiltonian, Eq. (13) as a Slater determi-
nant. This is determined by the density matrix renormal-
ization group [43] approach. Then, we suddenly switch on
Jz and let the system evolve according to the Hamiltonian,
Eq. (13). To study the quench dynamics we use the time
evolving block decimation algorithm [44] in the matrix
product state representation. We have followed the time
evolution of several physical quantities, such as the single
particle density matrix or the density correlator, and we
found that all show signs of supersonic modes. However,
there is a compromise: we have to keep the ration,
jJz=Jj≲ 0.4, relatively small in order to retain the flat part
of the spectrum as in Fig. 2 with constant imaginary part.
On the other hand, the smallness of the interaction
suppresses the higher order supersonic modes, as evident
from Fig. 1. In Fig. 3, we show the density correlator

-4 -2 0 2 4

-2

-1

0

1

FIG. 2. The complex many-body energy spectrum, En of
Eq. (13) for N ¼ 14 at half filling is plotted for Jz ¼ −0.3J
(red dots) and the noninteracting, Hermitian case with Jz ¼ 0
(blue squares) for comparison from exact diagonalization using
periodic boundary conditions. During the time evolution with
e−itH, states with the largest imaginary part contribute the most,
which is the upper flat part of the spectrum. Out of these, states
with increasing ReEn have less influence due to their decreasing
overlap with the initial state. Due to the normalization in Eq. (11),
the imaginary offset of energies drops out from the expectation
values.
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FIG. 3. Contour plot of the density correlator,
χnnðx; tÞ=χnnðx; 0Þ, where denominator cancels the initial spatial
correlation in the ground state, and all features result from the
non-Hermitian quench dynamics with Jz=J ¼ −0.3. The white
dashed lines denote the n ¼ 1, 2, and 3 modes by using the sound
velocity, ṽ ¼ 1.02J without any fitting.
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χnnðx; tÞ, defined in Eq. (11) using Ox ¼ nx in a system
with N ¼ 201 and 101 fermions. The system is slightly
away from half filling, which helps in killing the umklapp
term [13]. We checked that qualitatively similar results
arise exactly at half filling with N ¼ 200 and 100 particles,
though.
Experimental relevance.—Non-Hermitian Hamiltonians

can arise from a variety of different ways. It can arise from
classical photonic wave guides, which only emulates the
Schrödinger equation [6]. In this case, supersonic modes
are expected to occur for arbitrary long times. The non-
Hermitian time evolution can also follow from a condi-
tional Lindblad-type dynamics [35,42], when the environ-
ment is continuously monitored in order to maintain the
condition of no quantum jump [45]. The probability of
having no quantum jump decreases steadily with time,
rendering long time non-Hermitian dynamics increasingly
difficult to observe, though not impossible [46]. In this
setting, Eq. (13) is realized by a dissipative lattice [47] with
one-body loss, i.e., superimposing a weak resonant optical
lattice (for the non-Hermitian hopping) and also imple-
menting background two-body loss [45] (for the imaginary
interactions). Finally, non-Hermiticity could arise by add-
ing the imaginary self energy (i.e., from finite lifetime
quasiparticles) from diagrammatics [48] to an originally
Hermitian system, and treating this as an effective non-
Hermitian system. In this case, however, the temporal
dynamics of the system would also require to go beyond
the self-energy approximation and include vertex correc-
tions as well, and the ensuing dynamics would probably
feature a single light cone, as dictated by the Lieb-
Robinson bound [16].
Summary.—We studied many-body non-Hermitian

dynamics by a quantum quench in a PT -symmetric LL.
The fermionic single particle density matrix reveals LL
universality in the long time limit. For short times, in
contrast to unitary evolution, the Lieb-Robinson bound is
violated and supersonic modes emerge due to nonunitary
dynamics. They travel with velocities that are multiples of
the conventional light cone velocity. We argue and dem-
onstrate that this emergent phenomena is characteristic to
non-Hermitian systems and arise from an effective long
range Hamiltonian, governing the time evolution, although
the physical Hamiltonian contains only short range, though
non-Hermitian terms. Our analytical findings are bench-
marked by the numerical study of a non-Hermitian short
range interacting lattice fermions.
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