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The effect of short-range disorder in nodal line semimetals is studied by numerically exact means. For
arbitrary small disorder, a novel semimetallic phase is unveiled for which the momentum-space amplitude
of the ground-state wave function is concentrated around the nodal line and follows a multifractal
distribution. At a critical disorder strength, a semimetal to compressible metal transition occurs, coinciding
with a multi- to single-fractality transition. The universality class of this critical point is characterized by the
correlation length and dynamical exponents. At considerably higher disorder, an Anderson metal-insulator
transition takes place. Our results show that the nature of the semimetallic phase in nonclean samples is
fundamentally different from a clean nodal semimetal.
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The robustness of certain material properties to pertur-
bations is arguably the most appealing property of topo-
logical matter. Topological insulators stood out as an
important class of topological materials [1,2] whose sta-
bility with respect to interactions and disorder is by now
fairly well established [3,4]. Gapless systems can, however,
also support nontrivial momentum-space topology and are
expected to be less robust to such effects. Among these, are
the Weyl nodal loop (WNL) semimetals, for which the
valence and conduction bands linearly touch along one-
dimensional (1D) loops in the three-dimensional (3D)
momentum space [5]. Their recent theoretical prediction
[6–8] and experimental discovery [9,10] triggered intense
experimental [11–20] and theoretical interest [21–34].
A manifestation of WNL’s topological nature is the

presence of surface (“drumhead”) edge states [7,24,35–37]
on surfaces parallel to the loop plane, which are induced by
chiral symmetry. Since the Fermi surface is reduced to a 1D
nodal line, the density of states (DOS), ρðEÞ, vanishes
linearly for low energies, i.e., ρðEÞ ∝ jEj.
The robustness of the topological semimetal state to

interactions [38–42] and disorder [43,44] is of major
importance to understand in which conditions it might
be observed. For Dirac and Weyl systems with isolated
nodal points, the effect of static disorder has recently been
addressed by a series of thorough numerical studies [45–
50]. The clean-limit incompressible semimetallic state was
shown to survive up to a finite critical strength of a box-
distributed disorder potential where a transition to a
compressible diffusive metal takes place [51].
For a WNL, the exact nature of the finite disorder state is

yet unknown. Coulomb interactions were shown to induce

a quasiparticle lifetime, thus yielding Fermi liquid behavior
[52]. Weak disorder does not change the compressibility, to
leading order [53]. Nevertheless, disorder, with or without
interactions, was found to be marginally relevant in the
clean case [53], pointing to a different scenario than nodal
point semimetals. Perturbative arguments are, however, of
limited use to characterize the stable fixed point at finite
disorder. The latter is of key importance to understand the
properties of WNL compounds, particularly regarding
transport, which has, up to know, been assumed diffusive
[54].
In this Letter, we unveil the phase diagram of a WNL in

the presence of short-range disorder using numerically
exact methods. It includes a novel multifractal (MF)
semimetallic (SM) phase, corresponding to the stable fixed
point for weak disorder. Our main results are summarized
in Fig. 1. We show that any small amount of disorder mixes
all the Weyl states along the nodal line depicted in Fig. 1(a),
and that the width of the wave function Γ vanishes with
increasing linear system size L. The resulting state is
fundamentally different from the clean one. Although
the DOS still vanishes at the Fermi level, i.e., ρ0≡
ρðE ¼ 0Þ ¼ 0, the momentum-space wave function has a
multifractal structure. The MF-SM phase survives up to a
critical disorder strength, where a transition to a single-
fractal (SF) metallic (M) phase takes place. In this phase the
system is a standard diffusive metal with a finite ρ0 and Γ
loses system size dependence. At larger disorder strength,
an Anderson metal-insulator transition occurs. The phase
diagram is sketched in Fig. 1(b).
Model and methods.—We study a two-band model of a

WNL on a cubic lattice with short-range disorder,
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H ¼
X

k

c†kHkck þ
X

r

c†rVrðWÞcr: ð1Þ

The first term describes a clean WNL, with k a 3D
Bloch vector, Hk¼½txcosðkxÞþtycosðkyÞþcosðkzÞ−m�τxþ
t2sinðkzÞτy, with τx, τy Pauli matrices acting on the orbital

pseudospin indices α ¼ 1, 2, and c†k ¼ ð c†k;1c†k;2 Þ. The
second term is the disorder potential, where r is a lattice
site and VrðWÞ ¼ diagðvr1; vr2Þ, with random variables
vrα ∈ ½−W=2;W=2�. The results presented hereafter are for
tx ¼ 1.1, ty ¼ 0.9, m ¼ 2.12, and t2 ¼ 0.8. This choice
yields a single nodal line, arising for kz ¼ 0. The hopping
anisotropy breaks unwanted degeneracies and ensures the
system is generic within this class.
We numerically characterize the spectral and wave

function properties. To compute the DOS we use the kernel
polynomial method (KPM) with an expansion in
Chebyshev polynomials to order Nm [55–57], reaching
system sizes up to L ¼ 103. To characterize the system’s
lowest energy eigenstates, we use Lanczos exact diagonal-
ization (ED).
The eigenstates’ structure is revealed by the generalized

momentum-space inverse participation ratio [58,59],

IkðqÞ ¼
�X

k;α

jΨk;αj2
�

−qX

k;α

jΨk;αj2q ∝ L−τkðqÞ; ð2Þ

where Ψk;α is the eigenstate amplitude in the k Bloch
momentum state and orbital α. The size dependence is
characterized by a q-dependent exponent τk, defined in

terms of the generalized dimension, DkðqÞ, as τkðqÞ ¼
DkðqÞðq − 1Þ. In a ballistic phase, the wave function is
localized in momentum space, IkðqÞ is L independent, and
DkðqÞ ¼ 0 for q > 0. For a 3D-diffusive metal or an
Anderson insulator, DkðqÞ ¼ 3. In these cases DkðqÞ is
constant, and the system is a single fractal. Multifractals
correspond to cases where DkðqÞ is q dependent. This
happens, for instance, for the real-space inverse participation
ratio at a disorder driven metal-insulator transition [60].
To attenuate finite-size effects, we use twisted boundary

conditions and compute Ik averaging over random twist
angles, disorder, and the two lowest energy eigenstates,
taking 250–1000 configurations. τk is extracted from the
size dependence of Ik.
SM-M transition.—The DOS for different W values and

varyingNm is shown in Fig. 2(a) [note that ρðEÞ ¼ ρð−EÞ].
For large enough jEj, ρðEÞ converges for the highest Nm
attainable. However, within an energy window around
E ¼ 0, ρðEÞ does not converge for the largest Nm. This
difficulty of the KPM method in resolving sharp spectral
features arises already in the clean limit and prevents a
direct determination of ρ0 for small W. Nonetheless, for
larger W the system is clearly metallic as ρ0 converges to a
finite value.
Quantitative predictions can be obtained from ∂ρ=∂E≡

ρ0ðEÞ as a function of W, plotted for different energies
within the converged region in Fig. 2(b). ρ0ðEÞ increases up
to a maximum value at W ¼ WmaxðEÞ and decreases
abruptly for largerW. Thus, there are two different regimes
when E → 0: for smaller (larger) W, ρ0ðEÞ increases
(decreases) until reaching ρ0ð0Þ ≠ 0 [ρ0ð0Þ ¼ 0]. These
results strongly suggest the transition value, Wc, from a
semimetal (ρ0 ¼ 0) into a metal (ρ0 ≠ 0) to be finite. In the
SM phase, the growth of ρ0ðEÞ as E → 0 agrees with the
observed negative concavity of ρðEÞ [see Fig. 2(a)],
corroborating the ρ0 → 0 behavior. This provides two ways
to compute Wc: (i) Using limE→0WmaxðEÞ ¼ Wc, and
extrapolating WmaxðE → 0Þ from the converged region,

(a) (b)

FIG. 2. (a) DOS for different W and varying Nm. For energies
above the dashed vertical line, differences between Nm ¼ 1000
and Nm ¼ 2000 are below 1%. (b) ρ0ðEÞ, converged with Nm, as
a function of W, for different E. Inset: Extrapolation to E → 0 of
ρ0ðEÞ crossing points (Filled circle) and ρ0ðEÞ maximum (Filled
square).

(a)

(b)

FIG. 1. (a) The Fermi surface of the WNL is a continuous line
in the plane kz ¼ 0. The ground-state wave function has a width
ΓðW;LÞ around the loop, for fixed linear system size (L) and
disorder strength (W). (b) Schematic phase diagram as a function
of W. For small W, the DOS at E ¼ 0 vanishes, ρ0 ¼ 0, and Γ
vanishes with L−1—the system is in a multifractal semimetallic
phase. ForW larger than a critical disorder strength, ρ0 ≠ 0 and Γ
is L independent—the system enters a single-fractal metallic
phase. For larger W the system becomes an Anderson insulator.
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which yields Wc ¼ 2.61� 0.01 [inset of Fig. 2(b)]; (ii) the
crossing point WCrossðE;ΩÞ, for which ρ0ðEÞ ¼ ρ0ðΩEÞ
with Ω > 0, obeys limE→0WCrossðE;ΩÞ ¼ Wc. By comput-
ing the crossing point, WCrossðE;ΩÞ, between ρ0ðEÞ and
ρ0ðΩEÞ for differentE in the converged region (Ω ≃ 0.9), we
obtained a linear dependence on E. Extrapolating E → 0
through a linear fit, yields Wc ¼ 2.74� 0.02 [Fig. 2(b),
inset].
These two methods should yield the same result when

E → 0. However, there is an extrapolating uncertainty in
the results due to the bounded lowest attainable energy. We
estimate the critical point by computing the least squares
between the two, yielding Wc ¼ 2.64� 0.05, compatible
with the results obtained with ED [61].
In contrast with the numerical exact method, the self-

consistent Born approximation yields an exponentially
suppressed DOS for low disorder [61], similar to 3D
Weyl semimetals [66].
MF-SF transition.—We now discuss the differences

between the MF and SF regimes. The computed exponent
τkðqÞ is shown in Fig. 3(a) [67]. A very peculiar behavior
can be observed in the MF phase: for q < 1, DkðqÞ ¼ 3, as
expected for a 3D-diffusive metal; whereas for q > 1,
DkðqÞ ¼ 1, implying k-space delocalization in one dimen-
sion. The origin of this phenomenon is discussed below. In
the SF case, for larger W, τkðqÞ follows the 3D-diffusive
line [Fig. 3(a)] corresponding to DkðqÞ ¼ 3. A finite-size
scaling analysis shows that τkðqÞ decreases (increases) with
L for W < 2.25 (W > 2.75), demonstrating the multi
(single)-fractal nature of this phase in the thermodynamic
limit. By inspection, the critical point where the MF-SF
transition occurs is thus within W0

c ∈�2.25; 2.75½. Below,
we compute W0

c and show it is compatible with Wc,
obtained for the semimetal-metal transition.

The origin of the MF-SF transition can be understood by
inspecting the probability distribution (PD) of the lowest
energy eigenstate in momentum space, jΨkj2. As shown in
Fig. 1(b) for a typical realization of disorder, the PD is
concentrated along a region of width Γ along the nodal line.
Let Σloop be the set of ðk; αÞ points inside a torus with
minor radius Γ surrounding the WNL. Since the loop is
approximately circular, the number of points in Σloop can be
estimated as N ≃ 2πΓ2PL3=ð2πÞ3, where P is the loop
perimeter. Since N can also be estimated from Ik≡
Ikðq ¼ 2Þ ≃ 1=N, we define the width of the wave func-
tion’s PD to be

Γ ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IkL3P

p : ð3Þ

Figure 3(c) depicts Γ as a function of W and L [68]. We
found that ΓðW;LÞ converges with system size in the SF
phase and scales to zero with L−1 in the MF phase.
Within the MF phase, a scaling analysis of jΨkj2 in the

plane kz ¼ 0 is shown in Fig. 3(d). The rescalings jΨkj2 →
jΨkj2L and k0 → k0L, where k0 is the toroidal minor radial
coordinate, make the numerical results for different L
collapse. This shows that, in this regime, momentum
space can be divided in two regions: k0 < Γ, where
jΨkj2 ∼ L−1ðk0Þ0, and k0 > Γ, where the PD decays
with k0 as jΨkj2 ∼ L−3ðk0Þ−2. An estimation of IkðqÞ
yields, in the large L limit, IkðqÞ ¼ c1

P
k∈Σloop

L−qþ
c2

P
k≠Σloop

L−3qðk0Þ−2q ¼ c01L
1−q þ c02L

3ð1−qÞ, where c1,
c2, c01, c

0
2 are L-independent constants. This explains the

results of τkðqÞ in Fig. 3(a) as the scalings L3ð1−qÞ and L1−q,
respectively dominate for q < 1 and q > 1. In simple
words, although the larger fraction of the wave function’s
PD collapses in the nodal line, there is still a finite fraction
that spreads over the rest of the Brillouin zone’s volume. In
the SF phase, while the asymptotic behavior jΨkj2 ∼
L−3k0−2 is also observed, the scaling collapse is obtained
for jΨkj2 → jΨkj2L3 [61].
It is worth noting that, as defined in Eq. (3), Γ can be

numerically resolved only if Γ ≫ 2π=L. However, when
restricted to the plane kz ¼ 0, jΨkj2 is still delocalized
along the loop if the area of Σloop restricted to kz ¼ 0, i.e.,
ΓP is much larger than the area of the momentum-space
cell ð2π=LÞ2. This extends the resolution computed within
the kz ¼ 0 plane to Γ ≫ ð2π=LÞ2=P, and allows us to study
cases with Γ ≤ 2π=L in Fig. 3(d). For small Wð≲1.5Þ, we
start observing Γ ∼ L−x, with 1 < x < 2, that we attribute
to a lack of resolution for the available sizes [61].
To estimate the critical disorder strength,W0

c, of the MF-
SF transition, we define characteristic scales that are
finite within the respective phases in the thermodynamic
limit, and diverge at W0

c. In the MF phase, we define
λs ≡ ΓLP, which diverges as W → W0−

c ; in the SF phase,
λm ≡ Γ−1 diverges as W → W0þ

c . Then, the quantity

(a) (b)

(c)

(d)

FIG. 3. (a) Exponent τkðqÞ vs q [see Eq. (2)] for differentW and
L. (b) Plot of the ground-state PD in momentum space jΨkj2 for a
configuration with W ¼ 3.5. (c) jΨkj2 width around the loop
ΓðW;LÞ vs W for varying L. (d) jΨkj2 as a function of k0 for
W ¼ 1.75 and kz ¼ 0, where k0 is measured relative to the loop.
The system is in the MF regime and the PD curves collapse by
rescaling jΨkj2 → jΨkj2L and k0 → k0L. L0 ¼ 16 is the smallest
used linear system size.
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ϕβðW;LÞ ¼ ðλ−1s þ βλ−1m Þ−1, with β a positive real con-
stant, only diverges at W ¼ W0

c. Figure 4(a) shows
ϕβðW;LÞ as a function of L, for β ¼ 5 and different L.
For a fixed L, ϕβðW;LÞ has a maximum at W ¼
WmaxðL; βÞ. The critical disorder strength can thus be
obtained by limL→∞WmaxðL; βÞ ¼ W0

c, for any β > 0.
However, for finite L we observe a β dependence of
WmaxðL; βÞ. As shown in Fig. 4(b), there are two regimes:
for β < βc ≃ 5 (β > βc) WmaxðL; βÞ decreases (increases)
with L. Thus, WmaxðL; βcÞ provides an estimation of W0

c
that minimizes finite-size effects. For L ∈ ½20; 26� we find
βc ≈ 5, while for smaller system sizes, L ∈ ½12; 18�,
βc ≈ 3.6. Extrapolating βc for L → ∞, we obtain W0

c ¼
2.56� 0.10 [61], in good agreement with the critical value
for the SM-M transition. In the following, we take the
average value of the SM-M and MF-SF critical points and
set Wc ¼ W0

c ¼ 2.6� 0.1.
Scaling analysis.—We take Γ and Γ−1=L as finite-size

scaling variables for the SM and M phases, respectively,
and write

Γ ¼ fsðL=ξsÞ; ð4Þ

Γ−1=L ¼ fmðL=ξmÞ; ð5Þ

where fs and fm are, respectively, scaling functions in the
SM and M phases. The thermodynamic-limit correlation
lengths ξs and ξm, respectively, in the SM and M phases,
scale as ξs, ξm ∼ δ−ν with δ ¼ jW −Wcj=Wc. Collapsing
the curves in Eq. (5) for different W, allows the determi-
nation of ξs and ξm up to multiplicative constants. The data
collapse is depicted in Figs. 5(a)–5(b). Fitting ξm ∼ δ−ν

yields ν ¼ 1.0� 0.2. We could not unambiguously fit ν
from ξs due to the large error in its computation, arising
from small W resolution problems (discussed before) and
finite-size effects for W near Wc. Nonetheless, the value of
ν obtained from ξs is compatible with the scaling collapse
of ξm [61].

Following Ref. [50], we assume the scaling form of the
DOS near the SM-M transition to be [61]

ρðEÞ ∼ δνðd−zÞF γðδ−νzjEjÞ; ð6Þ

where the subscript γ in Eq. (6) distinguishes the scaling
functions in the SM (F s) and M (Fm) phases. At the
transition, W ¼ Wc, the DOS varies as ρðEÞ ∼ jEjðd=zÞ−1.
After fitting ρðEÞ near W ¼ Wc, we obtained z ¼
1.9� 0.1. This value is compatible with the results
obtained with ED [61]. Using the values of z and ν
determined previously, the ρðEÞ data collapse into two
different branches (SM and M phases) touching at
W ¼ Wc, as shown in Fig. 5(c).
As expected, the critical exponents obtained here differ

from those of the 3D metal-insulator Anderson transition
[69–72], as well as from those of a disordered Weyl
semimetal (z ≈ 1.5 and ν ≈ 1) [50], confirming that this
transition belongs to a different universality class.
Anderson transition.—In the M phase, upon increasing

W, a second phase transition takes place at Wl
c ¼ 11.0�

0.2 [61]. The critical exponent ν is compatible with a 3D
Anderson transition in the orthogonal symmetry class,
between a 3D-diffusive metal and an Anderson insulator.
Discussion.—A clean WNL is unstable to an infinitesi-

mal amount of disorder and flows to a strong-coupling
fixed point, a novel phase—here dubbed multifractal-
semimetal—where the DOS vanishes at the Fermi energy
and the momentum-space distribution of low energy states
has a multifractal structure, being concentrated on the nodal
line. Upon increasing the disorder strength, the DOS
becomes finite and the eigenstate’s momentum-space dis-
tribution transitions to that of a 3D-diffusive metal. Both
phenomena arise for the same critical value of disorderWc,
up to numerical accuracy. The ensuing multifractal semi-
metal to single-fractal metal phase transition belongs to a
novel universality class characterized by the critical expo-
nents, ν ¼ 1.0� 0.2 and z ¼ 1.9� 0.1, and by the scaling

(a) (b)

FIG. 4. (a) The quantity ϕβðW;LÞ vs W (see text), for β ¼ 5
and varying L. The red dashed line intersects the maxima of each
L curve. (b) WmaxðLÞ vs L for different β, with L ∈ ½20; 26�. The
horizontal dashed, black line separates regimes where WmaxðLÞ
either increases or decreases with L.

(a) (b) (c)

FIG. 5. (a) Collapse of scaling variable Γ by shifts of log ξs, for
L ∈ ½20; 26�. (b) Collapse of scaling variable Γ−1=L by shifts of
log ξm, for L ∈ ½12; 26�. (c) Collapse of the ρðEÞ curves according
to Eq. (6), obtained for different W and E ∈ ½0.025; 0.175�, with
parameters ν ¼ 1, z ¼ 1.9 and Wc ¼ 2.6. The curves collapse in
two different branches that connect atW ¼ Wc, corresponding to
the SM and M phases.
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functions for the DOS and correlation lengths. Further
increasing the disorder, the 3D-diffusive metal transitions
to an insulating state through an Anderson metal-insulator
transition.
The implications of our results to edge state physics and

to the transport properties of the disordered WNL will be
given elsewhere [73]. It would also be interesting to see if the
rare regions effects reported for Dirac and Weyl semimetals
do produce a finite contribution to ρ0 [47,74–76] inWNL or
otherwise leave the semimetallic phase unchanged [48].
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