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We study a one-dimensional Fermi gas in the presence of dissipative coupling to environment through
the Lindblad equation. The dissipation involves energy exchange with the environment and favours the
relaxation of electrons to excitations. After switching on the dissipation, the system approaches a steady
state, which is described by a generalized Gibbs ensemble. The fermionic single particle density matrix
resembles deceivingly to that in a hermitian interaction quench. It decays inversely with the distance for
short times due to the fermionic correlations in the initial state, which changes into a noninteger power
law decay for late times, representing dissipation-induced Luttinger liquid behavior. However, the
crossover between the two regions occurs due to dissipation-induced damping, and is unrelated to the
propagation of excitations. The velocity of information spreading is set by the dissipative coupling, and
differs significantly from the original sound velocity. The thermodynamic entropy grows as −t ln t
initially, and saturates to an extensive value. Our results can be tested experimentally in one-dimensional
Dirac systems.
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Introduction.—Thanks to the advent of sophisticated
experimental technologies in cold atomic settings and in
condensed matter, the creation and controlled manipulation
of isolated quantum systems became possible [1–3]. In
particular, one can follow the spatiotemporal dynamics of
strongly interacting quantum gases [4,5] after some arbi-
trary time evolution protocol. The emerging universal
behavior and scaling provides not only essential informa-
tion on the (pre-)thermalization and relaxation, but is also
relevant to simulate the early Universe after inflation, for
which the experimental knobs are obviously limited. All
this information becomes relevant for quantum computa-
tion and information processing [6].
However, no system is perfectly isolated from the

environment, therefore considering open quantum systems,
coupled to some external bath is necessary to understand
realistic systems. In its simplest form, this is taken into
account by the Lindblad equation [7–9]. This enterprise
already gives way to engineer peculiar, dissipation-induced
states of matter with no obvious analogues in closed
quantum systems [10–16].
For closed quantum systems, Landau’s Fermi liquid

picture provides a good description of the normal state of
many interacting systems in dimensions higher than one
[17]. Therein, many properties of the original Fermi gas
are inherited, though certain properties are renormalized.

This picture breaks down in one dimension, and the
ensuing interacting ground state differs markedly
from that of the initial Fermi gas [18,19]. The original
fermionic excitations are replaced by bosonic collective
modes, consisting of many electron-hole pairs. Given the
apparent vulnerability of a one-dimensional Fermi gas in
closed quantum systems to Luttinger liquid or gap open-
ing instabilities [18,19], their fate in an open quantum
system is still an open question, i.e., when the fermionic
degrees of freedom living in one dimension are coupled
dissipatively to some environment. In particular, what
is the structure of the ensuing steady state and what
characterizes the nonunitary dynamical evolution towards
the steady state?
This motivated us to investigate a one-dimensional Fermi

gas in the presence of dissipative coupling to environment
through the Lindblad equation. The dissipation involves
energy exchange with the environment and favors the
relaxation of electrons to excitations. We follow the full
nonunitary dynamics of the system after switching on the
dissipation at t ¼ 0. Other systems were also investigated
in similar context [20,21]. We find that the steady state is
described exactly by a generalized Gibbs ensemble. The
dissipation induces Luttinger liquid like correlation during
the time evolution, but the velocity of information spread-
ing is set by the dissipative coupling, and is unrelated to the
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sound velocity. Our findings can be tested with current
experimental technologies.
Dissipation in a one-dimensional Fermi gas.—We con-

sider noninteracting one-dimensional spinless electrons,
which, within the realm of a low energy theory, can
propagate to left or right [18,19]. The low energy effective
theory of the electrons in bosonized form gives rise to the
Luttinger model with the Hamiltonian

H ¼
X
q>0

ω0ðqÞðbþq bq þ bþ−qb−qÞ; ð1Þ

where bq is the annihilation operator of the bosonic
excitations which is bilinear of the original fermionic
operators [18,19,22]. In Eq. (1), ω0 ¼ vjqj is the non-
interacting spectrum with v the sound (or Fermi) velocity,
describing low energy excitations around �kF with kF the
Fermi momentum.
In an open quantum system, coupling to environment

induces nonunitary time evolution, which is described by
the Lindblad equation as

∂tρ ¼ −i½H; ρ� þ
X
q≠0

ð½Lq; ρLþ
q � þ H:c:Þ; ð2Þ

which determines the dynamics of the density matrix ρðtÞ.
This dissipative coupling to environment is taken into
account by the jump operators Lq, which are best intro-
duced visually in Fig. 1 for our current system. They only
involve energy exchange with the environment and favor
the relaxation of electrons to excitations. Similar jump
operators were considered in Ref. [10]. The bosonized
jump operators, visualized in Fig. 1 are

Lq ¼
ffiffiffiffiffiffiffiffi
γjqj

p
ðηbq þ bþ−qÞ; ð3Þ

with η > 0 [23], and γ measures the strength of the
coupling between the system and the environment and
has velocity dimension. With this choice of jump operators,
the ensuing problem becomes genuinely many body.
In general, the jump operators of the Lindblad equation

describe the elementary processes occurring while the
system interacts with its environment. The operators in

Eq. (3) are chosen in such a way that they describe electron-
hole excitation and relaxation while the total momentum of
the system is shifted by momentum −q. Electron excita-
tions increase the system energy with ω0ðqÞ while electron
relaxation decreases it with the same amount. These
processes are taken into account with different amplitudes
and the parameter η enables us to describe either dissipation
of energy to the environment or energy pumped into the
system. Our choice of jump operators is also motivated by
the possibility of studying dissipative effects analytically,
focusing on features that do not depend qualitatively on the
form of the coupling to the environment. Furthermore,
the operator in Eq. (3) can be regarded a generalization of
the electron density since Lq is proportional to the Fourier
transformed electron density for η ¼ 1. This limit was
considered in Refs. [24,25].
To set the stage and to appreciate the role of η, we first

calculate the time evolution of the average number of
excitations, n̂q ¼ bþq bq, as

nqðtÞ ¼ Tr½ρðtÞn̂q�

¼ 1

η2 − 1
þ
�
nqð0Þ −

1

η2 − 1

�
e−2γjqjtðη2−1Þ; ð4Þ

where nqð0Þ is the occupation number in the initial state.
For η > 1, i.e., when the boson annihilation has a larger
amplitude compared to the boson creation, the boson
number relaxes to 1=ðη2 − 1Þ. This indicates that the
system has a stable steady state. For η ≤ 1, however, the
occupation number explodes and the system is essentially
boiled up to infinite temperatures.
By studying Eq. (2), it is remarkable that the Lindblad

equation only couples q and −qmodes as long as the initial
state does not couple additional modes. This allows us to
write ρðtÞ ¼ Q

q>0 ρqðtÞ.
Time evolution and steady state of the Lindblad

equation.—For one specific q > 0 mode, the solution of
Eq. (2) is assumed in the form of

ρqðtÞ ¼ rqðtÞecqðtÞbqb−qe− ln½νqðtÞþ1�ðbþq bqþb−qb
þ
−qÞ

× ecqðtÞ�b
þ
q b

þ
−q ; ð5Þ

where νqðtÞ and rqðtÞ are real functions of time and cqðtÞ is
a complex-valued function. The trace of the density matrix
is preserved when νqðtÞ > 0 and

rqðtÞ ¼
νqðtÞ2 − jcqðtÞj2

νqðtÞ þ 1
> 0 ð6Þ

at any time instant. The latter equality shows that rqðtÞ
is expressed with νqðtÞ and cqðtÞ, therefore, the
density matrix is completely characterized by these two
functions. The average number of excitations is written as

FIG. 1. Illustration of jump operators in the Lindblad equation,
Lq and L−q create electron-hole pairs on the right (around kF) and
left (around -kF) moving branches with momentum −q and q,
respectively. The dashed line denotes the Fermi energy, and filled
(empty) circles stand for electrons (holes). The jump operators
are mixtures of excitation and relaxation of an electron with
amplitude 1 and η, respectively.
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nqðtÞ ¼ νqðtÞ=½νqðtÞ2 − jcqðtÞj2� which has already been
evaluated in Eq. (4).
By substituting Eq. (5) into the Lindblad equation

Eq. (2), we obtain after some lengthy algebra [26]

_νq ¼ −2γjqj½jcqj2 þ ν2q þ νqð1 − η2Þ þ νqηðcq þ c�qÞ�;
ð7aÞ

_cq ¼ 2ivjqjcq þ 2γjqj½cqðη2 − 1Þ − ηðν2q þ c2qÞ − 2νqcq�:
ð7bÞ

Despite their nonlinear nature, the differential equations
can be solved and the stable steady states can be determined
analytically [26]. For η ≤ 1, the stable steady state is
νex ¼ 0 and cex ¼ 0. For these values, however, no density
matrix can be assigned since νex is out of the domain ν > 0.
Nevertheless, the steady state can be interpreted physically
as the boiled up system which is characterized by an infinite
temperature. This is in accordance with the preliminary
calculations of the occupation number. Namely, for η ≤ 1,
boson annihilation (electron relaxation) is not strong
enough to damp the system, and the environment induces
energy explosion.
For η > 1, when boson annihilation is expected to be

strong enough to realize energy dissipation in the system,
the stable fix point of the differential equations is

ν∞ ¼ jAj2 η2 − 1

jAj2 − η2
c∞ ¼ −

ν∞η

jAj2 A ð8Þ

with A¼1þ½iv=γðη2−1Þ�. Neither A nor the steady param-
eters ν∞ and c∞ depend on the wave number, therefore the
stationary density matrix is the same in all q > 0 channels.
This stationary density matrix is rewritten as

ρqðt → ∞; η > 1Þ ¼ ð1 − e−Ω∞Þ2e−Ω∞ðdþq dqþdþ−qd−qÞ; ð9Þ

where Ω∞ ¼ jacosh½ðν2∞ − jc∞j2Þ=ð2ðν∞ þ 1ÞÞ þ 1�j is in-
dependent from the wave number q > 0. The operators dq
describe the eigenstates of the steady state and can be
calculated via the Bogoliubov transformation [26]. The
steady density matrix resembles a thermal state with
ω0ðqÞ=T ¼ Ω∞. The wave number independence of Ω∞
implies that the temperature must depend on the momentum
as TðqÞ ∼ jqj. Therefore, the overall steady state density
matrix describes exactly a generalized Gibbs ensemble
(GGE) [30] [31]. Note that a similar density matrix describes
only approximately the steady state of a Luttinger liquid after
a hermitian interaction quench [33,34].
Single particle density matrix.—The density matrix

enables us to calculate various physical quantities. We
start with its single particle version, which is related to
the Green’s function in equilibrium. Since the fermion
field decomposes to right and left moving parts as

ΨðxÞ ¼ eikFxΨRðxÞ þ e−ikFxΨLðxÞ, it is enough [19,33]
to concentrate on

Gðx; tÞ ¼ −iTr½ρðtÞΨþ
R ðxÞΨRð0Þ� ð10Þ

whereΨRðxÞ is the fermionic field operator of right-moving
electrons with ΨRðxÞ ¼ ð1= ffiffiffiffiffiffiffiffi

2πα
p Þ exp ½iPq>0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=qL

p
ðeiqxbq þ e−iqxbþq Þ�, describing excitations around the right
Fermi momentum kF. By following standard steps [19,22],
we obtain

Gðx; tÞ
G0ðxÞ

¼ exp

�
−
X
q>0

4π

Lq
nqðtÞ½1 − cosðqxÞ�

�
; ð11Þ

where L is the system size [35]. It is remarkable that all
the time-dependence of the single particle density matrix
occurs only through the average number of excitations. The
function G0ðxÞ ¼ 1=ðxþ iαÞ2π is the correlation function
of noninteracting fermions at zero temperature. The length
scale α is in the range of the lattice constant and is
introduced as an exponential cutoff in momentum
space, expð−αqÞ.
The time-dependence of nqðtÞ is already obtained in

Eq. (4). By starting initially from the ground state of the
noninteracting Fermi gas, no excitations are present and
nqð0Þ ¼ 0. In the thermodynamic limit, we obtain from
Eq. (11)

ln
Gðx; tÞ
G0ðxÞ

¼ 1

1 − η2
ln

�
1þ ðxαÞ2

1þ ð x
αþ2γtðη2−1ÞÞ2

�
: ð12Þ

The most notable feature in Eq. (12) is that the time
evolution is governed by the speed γðη2 − 1Þ, which can
differ significantly from the original sound velocity v. For
unitary time evolution (i.e., in the absence of dissipative
coupling), any time dependence would be dictated by (a
renormalized) v. For the Lindblad equation, however, the
eigenvalues of the rhs of Eq. (2) have negative real part [7]
(except for the steady state), whose magnitude is controlled
by γ. After switching on the dissipation, any transient
component of the density matrix dies out during the time
evolution exactly due to the presence of γ. Therefore, the
velocity of information spreading is set by the dissipative
coupling, and differs from the original sound velocity.
At t ¼ 0, the right-hand side of Eq. (12) vanishes and

the correlation function is just equal to G0ðxÞ. After
switching on the dissipative coupling at t ¼ 0, the initial
Gðx; t ¼ 0Þ ∼ x−1 correlations are still retained for short
times. Indeed, for x ≫ γtðη2 − 1Þ, the Green’s function gets
dressed with a time dependent quasiparticle residue,
ZðtÞ ¼ ½1þ 2γtðη2 − 1Þ=α�−2=ðη2−1Þ, which decays as a
power law of time. This indicates that due to dissipation,
the initial noninteracting state gets renormalized and heavy
fermionic. On the other hand, for x ≪ γtðη2 − 1Þ, the
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fermionic nature of quasiparticles is lost and gives way to a
noninteger Luttinger liquid like exponent, summarized as

Gðx;tÞ∼
�ZðtÞ

x for x≫ γtðη2−1Þ
ðx=αÞ−ðη2þ1Þ=ðη2−1Þ for x≪ γtðη2−1Þ

: ð13Þ

These features are highlighted in Fig. 2, indicating a
smooth transition between the short and long distance
decay.
The late time power-law exponent is −ðη2þ1Þ=ðη2−1Þ.

Similar noninteger exponents are familiar for Luttinger
liquids, where the equilibrium exponent is well known [19]
to be −ðK þ K−1Þ=2 at T ¼ 0 with K being the Luttinger
parameter. In our setting, however, no electron interaction
is present and the nontrivial exponent occurs solely due to
the dissipation. It is important to note that the coupling to
the environment does not lead to an effectively interacting
ground state in the long time limit. On the contrary, we
found that the steady density matrix rather represents a
GGE which is a thermal state in general sense.
To elaborate on this a bit more, we consider

the 2kF oscillating part of the fermionic density correlation
function [19,26]. For short times cf. Eq. (13), it retains its
original fermionic spatial decay as ∼ cosð2kFxÞ=x2tδ−2,
while in the long time limit, it exhibits Luttinger
liquid behavior in terms of noninteger spatial power law
decay as ∼ cosð2kFxÞ=xδ with δ ¼ 2½ðη2 þ 1Þ=ðη2 − 1Þ� −
4f½ηðη2 − 1Þ�=½ðv=γÞ2 þ ðη2 − 1Þ2�g > 2 [26]. Here, both
characteristics of coupling to the environment, γ and η
appear, while the single particle density matrix features
only η. This indicates that the conventional Luttinger liquid
relations between various exponents [19,36] do not hold for
the dissipation-induced nontrivial steady state.

Entropy.—The relaxation toward the steady state is
manifested also in the time evolution of the thermodynamic
entropy, i.e., SðtÞ ¼ −Tr½ρðtÞ ln ρðtÞ�. At t ¼ 0, the system
is in a pure state with zero entropy. After switching on
the coupling to the environment, the entropy varies with
time as

SðtÞ ¼
X
q>0

2ΩqðtÞ
eΩqðtÞ − 1

− 2 ln ð1 − e−ΩqðtÞÞ; ð14Þ

due to the nonunitary nature of the Lindblad equation.
In Eq. (14), ΩqðtÞ is the instantaneous eigenvalue of the
exponent in the density matrix [26]. For weak dissipation,
i.e., when γ ≪ v and cqðtÞ ≈ 0 is assumed in each
momentum channel, the short time growth (γt ≪ α) of
the entropy is SðtÞ ∼ −Lγtα−2 lnðγt=αÞ. The entropy sat-
isfies a volume law and keeps growing for γt ∼ α and
saturates to its steady value afterwards, which follows from
substituting Ω∞ into Eq. (14).
The single particle density matrix of our model exhibits

similar time dependence to the evolution found after a
quantum quench in the Luttinger model where the inter-
action was switched on suddenly [33,36], follows by
unitary time evolution. Despite the similarities in the
correlations, there are three essential differences: first of
all, the velocity of information spreading in our case stems
from the decay rate from Lindblad dynamics, while it
originates from the propagation of quasiparticle excitations
for the hermitian case and equals to the effective speed
of light [37]. Second, the GGE is exact for the present
dissipative system and is only approximate for the hermi-
tian quantum quench [34,36]. Finally, dissipation leads to
entropy production in our model while unitary time
evolution does not change the entropy of the system.
Relation to experiments.—Experimentally, our setup can

be realized by two coupled Luttinger liquids [38], interact-
ing through chiral density-density interaction and without
electron tunneling. One Luttinger liquid would represent
the bath, which would directly induce the jump operators in
Eq. (3) in the liquid, with γη2 and γ determined by the
interaction between electron densities of the same and
opposite chirality. In another setting, the jump operators
can be implemented in a controlled fashion using a lattice
realization of the Creutz ladder [39,40], which can also be
realized experimentally [41]. When tuned to its critical
point, it realizes one-dimensional Dirac fermions [42], and
two legs of the ladder [42] host the right and left moving
excitations, which are then also spatially separated. This
allows for coupling the right and left moving densities to
the environment independently to realize the dissipators
depicted in Fig. 1. The unequal weights of the�q processes
in a given branch in Fig. 1 follow naturally, e.g., from the
detailed balance [43].
Conclusion.—We have investigated the fate of a one-

dimensional Fermi gas of electrons coupled to a dissipative

FIG. 2. The spatial dependence of the single particle density
matrix, Eq. (12) for several times and η ¼ 1.3. Initially at γt ¼ 0, it
decays as x−1 (blue line). During the time evolution, the correlation
function turns to the power-law decay as x−ðη2þ1Þ=ðη2−1Þ for
x ≪ γtðη2 − 1Þ, and retains the x−1 decay for x ≫ γtðη2 − 1Þ.
The black dashed line denotes the steady state behavior.
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environment via the Lindblad equation. Using Abelian
bosonization, the ensuing Lindblad dynamics is solved
within the realm of the low energy effective theory. The
steady state density matrix coincides with that of a gener-
alized Gibbs ensemble. After switching on dissipation
suddenly at t ¼ 0, the single particle density matrix or
Green’s function exhibits similar spatiotemporal pattern than
after a hermitian interaction quench [33]. This resemblance
is, however, deceiving. Due to dissipation, correlations do
not propagate with the effective sound velocity, but are
damped by the dissipation, resulting in a significantly
different velocity of information spreading. In addition,
the characteristic features of Luttinger liquid correlation in
terms of noninteger power law exponents for the spatial and
temporal decay are revealed, but in this case these are
induced by dissipation and not by electron-electron inter-
action. The thermodynamic entropy grows as −t ln t ini-
tially before saturating to its steady state value, and satisfies a
volume law. These features can be observed in coupled
Luttinger liquids or in one-dimensional Dirac systems.
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