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The existence of bulk nanobubbles has long been regarded with scepticism, due to the limitations of
experimental techniques and the widespread assumption that spherical bubbles cannot achieve stable
equilibrium. We develop a model for the stability of bulk nanobubbles based on the experimental
observation that the zeta potential of spherical bubbles abruptly diverges from the planar value below
10 μm. Our calculations recover three persistently reported—but disputed—properties of bulk nano-
bubbles: that they stabilize at a typical radius of ∼100 nm, that this radius is bounded below 1 μm, and that
it increases with ionic concentration.
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Long lived, freely suspended and spherical nanoscopic
bubbles, called nanobubbles [1–3], have been implicated in
numerous unexplained phenomena, such as long lifetimes
of positronium in liquid helium [4], or for the discrepancy
in tensile strength of water between experiment and theory
[5]. The last two decades has seen growing interest in
nanobubbles for potential uses in water management [6,7],
cleaning [8], medicine [9], and agriculture [10,11].
The diffusive dynamics of a spherical bubble in liquid is

described by the Epstein-Plesset (EP) theory [12], which
predicts the dynamics of spherical bubbles with radii as
small as R ∼ 10 μm with strong agreement to experiments
[13,14]. However, it also predicts that bubbles experience
either dissolution or unbounded growth, fueling long-
standing scepticism over the existence of bulk nanobubbles
(R ∼ 100 nm).
Despite these objections, stable surface-attached nano-

bubbles [see Fig. 1(a)] have been proven to exist through
numerous experimental techniques [15–19]. Stability is
attributed to strong contact line pinning [20–22] compel-
ling them to evolve in a constant footprint radius mode that
permits regimes of stable equilibrium [23–26]. However,
bulk nanobubbles cannot benefit from this mechanism, and
thus remain controversial. Instead, it is variously proposed
that bulk nanobubbles are stabilized due to a “skin” of
contamination [27,28]; surface charges on the liquid-gas
interface [29,30]; or substantially different surface tensions
[31] or gas densities [32] from their macroscopic counter-
parts. None of these proposals have gained wide accep-
tance, however.
The experimental proof that bulk nanobubbles exist is

also less than definitive. Dynamic light scattering (DLS)
experiments [3] consistently claim that bulk nanobubbles
have radii that (i) typically range from ∼50 to 500 nm

[8,34–36], (ii) appear to be strictly bounded to ≲1 μm, and
(iii) increase with ionic concentration [37–41]. However,
sceptics do not regard DLS characterization as authoritative
proof of the existence of bulk nanobubbles, since it depends
on processing light-scattered speckle that cannot be unam-
biguously attributed to compressible bubbles. However,
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FIG. 1. (a) Schematics of a bulk and surface-attached nano-
bubble. As a bulk nanobubble shrinks, its radius decreases and
the Laplace pressure driving dissolution accelerates. Conversely,
in a shrinking surface nanobubble, the radius of curvature
increases. (b) Direct solution of the EP model [Eqs. (1) and
(2)] for a spherical bubble for [from bottom to top] oversatura-
tions 0.8, 0.9, 1.0, 1.1, and 1.2ζe, where ζe ¼ 2γ=R0P0 is the
equilibrium oversaturation of a bubble with radius R0 ¼ 2 μm.
The bubble is static only at ζe; when ζ > ζe it grows without
bound, and when ζ < ζe it dissolves into the solution. (c) Mag-
nitude of zeta potential jψ jðRÞ of a shrinking bulk nanobubble of
radius R under the assumption of charge conservation, as
compared to the experiments of Takahashi, Chiba, and Li
[33], for R0 ¼ 8.75 μm and jψ0j ¼ 35 mV. For comparison a
curve corresponding to R0 ¼ 20 μm is also shown.
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these claims have been partially corroborated through
electron microscopy of featureless voids in flash-frozen
water [37,42], resonant mass [43], and refractive index
measurements [39].
In this Letter we link the breakdown of zeta potential

universality in shrinking spherical bubbles to the stability
of bulk nanobubbles in aqueous solutions at equilibrium
radii consistent with DLS experiments.
The EP model assumes that gas transport from the

bubble obeys the diffusion equation, which in spherical
geometry has the solution [12,44,45]

dR
dt

¼ −
DΔc
ρ

�
1

R
þ 1ffiffiffiffiffiffiffiffi

πDt
p

�
; ð1Þ

where D is the diffusion constant of dissolved gas in water,
ρ is the density of gas, and Δc ¼ cb − c∞ is the concen-
tration difference between the dissolved gas concentration
c in the liquid adjacent to the bubble cb and in the far-field
c∞. In all calculations we assign D ¼ 2 × 10−9 m2=s,
ρ ¼ 1.165 kg=m3, and cs ¼ 0.017 kg=m3. Substituting
cb ¼ Pb=kH (where Pb ¼ P0 þ 2γ=R is the gas pressure
in the bubble, γ is surface tension, and kH is Henry’s
constant) yields

Δc ¼
�
P0 þ

2γ

R

�
1

kH
− c∞ ¼ cs

�
2γ

RP0

− ζ

�
; ð2Þ

where cs is the saturation concentration, P0 is atmospheric
pressure, and we have defined [24] the oversaturation
ζ ¼ c∞=cs − 1, corresponding to ζ ¼ 0 for a gas-saturated
liquid. As shown in Fig. 1(b), a spherical bubble grows
without bound when ζ > ζe [46], but dissolves completely
when ζ < ζe. While a bubble is stationary at ζe ¼ 2γ=R0P0,
environmental variations in ζ mean that, in practice, the
bubble will observe only one of the first two outcomes.
A surface nanobubble avoids rapid dissolution due to

contact line pinning [23–26], which compels it to maintain
a fixed footprint radius L, see Fig. 1(a). This constraint
increases its radius of curvature during shrinkage, thus
reducing the Laplace pressure ∝ 1=R that drives dissolution
[47]. The mathematical implication of line pinning is to
reparametrize the dynamical equation from the form
_R ¼ fðRÞ to _θ ¼ fðθÞ. Whereas the dynamical function
fðRÞ has one root (corresponding to an unstable equilib-
rium), the reparametrized fðθÞ has two, the smaller of
which is a stable equilibrium point [23,24].
These arguments suggest a path for the stabilization of

bulk nanobubbles. If some physical effect modifies ΔcðRÞ
[Eq. (2)] to have more than one root, stable equilibrium is
assured, since in every pair of consecutive roots, one root
crosses the R axis with a positive gradient, and the other
with a negative gradient. (The equilibrium radius must also
satisfy additional conditions, e.g., positive and submicron.)
This principle explains the stability of particle-armored

micro and nanobubbles (widely used as ultrasound contrast
agents [48])—as a bubble shrinks, particles on the interface
jam together, generating a growing mechanical stress in
opposition to Laplace pressure [49].
We seek an analogous mechanism that applies to pure

aqueous systems. It has been known since the 19th century
[50] that water-gas interfaces are slightly negatively
charged [33,51]. We therefore assume the freshly nucleated
bubble holds an interfacial surface charge density σðRÞ.
The net charge exerts a mechanical pressure on the inter-
face [52,53] given by Pe ¼ σ2=2ϵϵ0, where ϵ0 is the
permittivity of free space, and the relative permittivity of
water is ϵ ≈ 80 at 20 °C. Electrostatic stress on the surface
acts radially outward, regardless of the sign of the net
charge. By symmetry, repulsion between charges on a
curved surface cancels everywhere except radially away
from the bubble’s center. Analogously, mechanical Laplace
pressure arising from surface tension is directed towards the
bubble’s center, against electrostatic stress.
Surface charges on the bubble’s liquid-gas interface draw

charged particles in the liquid, assembling a diffuse double
layer adjacent to the bubble’s interface. For a monovalent
spherical double layer of radius a, the surface charge
density is given by

σðaÞ ¼ 2ϵϵ0κkBT
e

sinh

�
eψ
2kBT

�
fðaÞ; ð3Þ

where e ¼ 1.6 × 10−19 C is the elementary charge, kB is
the Boltzmann constant, T is temperature, ψ is zeta
potential, κ−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵϵ0kBT=2c0e2

p
is the Debye length, c0

is the ionic concentration, and

fðaÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

κa
2

cosh2ðΨ=2Þþ
1

ðκaÞ2
8 ln½coshðΨ=2Þ�

sinh2ðΨÞ

s
ð4Þ

is a geometric term arising from an approximate solution to
the spherical Poisson-Boltzmann equation derived by
Ohshima et al. [54,55], where Ψ≡ eψ=2kBT. In the large
bubble limit κa ≫ 1, fðaÞ → 1, and Eq. (3) becomes the
Grahame equation for a planar double layer [56,57].
Bubbles larger than about 10 μm exhibit a universal

zeta potential of about ψ ≈ −35 mV, when measured by
optical zeta potentiometry [58]. The equilibrium concen-
tration of charge at the interface is specified by the chemical
equilibrium between the interface and bulk. Since charged
ions like hydroxide observe a potential-biased diffusion in
the vicinity of the interface, equilibration is governed
by the characteristic timescale τ ∼ l2=D ∼ 10−11 s where
l∼1Å. This is substantially faster than the τ∼R2=D∼1ms
shrinkage timescale of a 1 μm spherical bubble, and faster
than the temporal resolution experimental techniques to
measure zeta potential (∼0.1 s for optical visualization and
∼100 s for light scattering). Thus, one intuitively expects
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the measured zeta potentials of spherical bubbles to be
always at a constant value even if the charge distribution is
perturbed.
Contradicting this expectation, Takahashi, Chiba, and Li

[33] report that when a microbubble shrinks below about
8.75 μm, zeta potential universality abruptly breaks down,
diverging from about ψ ¼ −35 mV to about −60 mV at
R ¼ 2.5 μm. The breakdown of universality at the micro-
scale is not fully understood, but there are several plausible
reasons for its occurrence. The chemical equilibrium
between the interface and bulk liquid—which determines
the surface charge density—must be substantially different
in a highly curved bubble as compared to a planar interface.
For example, the curvature of the interface shifts the
chemical potential of charged ions to be lower adjacent
to a curved interface relative to a planar one [59]. This
curvature correction becomes considerable at the micro-
scale, allowing a curved interface to hold an elevated
concentration of charge compared to a flat interface.
Moreover, it is known from weak solution theory [60] that
the presence of “trace solutes,” e.g., ions or dissolved gas
in the liquid solvent matrix, shift the chemical potential
balance.
We do not aim to resolve the problem of what triggers

breakdown of zeta potential universality but to focus on how
the breakdown of universality influences the stability of bulk
nanobubbles. To model this effect we consider to a first
approximation that charge on the interface is conserved
during shrinkage, σðRÞ ¼ σ0R2

0=R
2, where σ0 is the initial

(i.e., at the point of the bubble’s nucleation) surface charge
density evaluated from Eqs. (3)–(4), and R0 is the initial
radius of the bubble at the point the accumulation begins. To
show a posteriori that this is a reasonable assumption we
compute the zeta potential accumulation implied by charge
conservation by rewriting this balance as the transcendental
equation gðψÞ ¼ σ0ðψ0; R0ÞR2

0 − σðψ ; RÞR2, using Eq. (3).
Repeating this iteratively for ψ0 ≈ −35 mV and R0 ≈
8.75 μm (both values extracted from Ref. [33]) for varying
R thus yields ψðRÞ, as shown in Fig. 1(c). An additional
curve for R0 ¼ 20 μm is also plotted to provide an indica-
tion of sensitivity to initial conditions. Although the fitting is
imperfect, this simple assumption reproduces—without
adjustable parameters—the substantial accumulation of zeta
potential reported by Takahashi et al. [33].
In the rest of this Letter, we examine the implications of

the charge conservation assumption, which transforms
Eq. (2) to

Δc¼cs

�
2γ

RP0

−
2ϵϵ0ðκkBTÞ2

P0e2
sinh2Ψ ·f2ðR0Þ

R4
0

R4
−ζ

�
: ð5Þ

Thus Eqs. (1) and (5) constitute our model. In practice R0 is
specific to the bubble generation technique. However,
bubbles may also homogeneously nucleate in sufficiently
oversaturated water. Treating water as a solvent containing

trace quantities of dissolved gas [49,61], calculations [49]
show that under typical conditions of ζ ∼ 1–2, one
expects R0 ≈ 2γ=P0ζ ∼ 0.5–1.0 μm.
Let us now demonstrate how a spherical bubble that

obeys charge conservation would evolve. In Figs. 2(a)
and 2(b) we show a series of bubbles with initial radii
0.9≲ R0 ≲ 3.0 μm. We assume that the interfacial zeta
potential before shrinkage commences is ψ0 ¼ −30 mV.
Initially the shrinkage curves track the EP solution (dashed
lines) closely, but later they abruptly stabilize. This effect
originates from the rapid divergence of Pe ∼ 1=R4 [see
Eq. (5)] relative to PL ∼ 1=R. Interestingly, the oversatura-
tion ζ triggers a transition to instability. While all bubbles
in Fig. 2(a) achieve a stable equilibrium at ζ ¼ 0, the
corresponding ones for ζ ¼ 1 [Fig. 2(b)] stabilize only for
R0 ≲ 1 μm, with larger bubbles growing without bound.
When ζ ≳ Pe=P0, Eq. (5) approximates the EP solution
[Eq. (2)], which is unstable [see Fig. 1(b)].
Next we explore the stable equilibrium radii Re for the

ζ ¼ 0 case; the finite oversaturation case is discussed later.
Figure 3(a) shows how Re depends on Debye length, for
initial zeta potentials ψ0 ¼ −5, −10, −20, and −30 mV.
Our key result is that spherical bubbles stabilize at the
submicron scale in a wide spectrum of Debye lengths,
namely from a strongly screened electrolyte to distilled
water (1 Å≲ κ−1 ≲ 1 μm). The dependence of Re on κ−1,
however, shows contrasting behaviors at the spectrum’s
extremes. In the small κ−1 limit, i.e., large ionic strength,
Re ∝ κ2=3, which can be seen by noting fðR0Þ → 1 and
seeking the root of Eq. (5). Conversely, for large κ−1,
fðR0Þ ∝ 1=κR0, eliminating the κ dependence in Eq. (5);
thus, Re becomes κ independent in solutions of low ionic
strength.

(a)

(b)

FIG. 2. Dynamical curves of spherical bubbles for oversatura-
tions ζ ¼ 0 and ζ ¼ 1 under the assumption that they are
stabilized by surface charges on the bubble [Eqs. (1) and (5),
solid lines]. The Debye length κ−1 ¼ 10−8 m and initial zeta
potential ψ0 ¼ −30 mV. The corresponding curves in the Ep-
stein-Plesset model [Eqs. (1) and (2)] are overlaid in dashed lines.
(a) When ζ ¼ 0, each bubble shown here is stable. (b) For finite
oversaturation, here ζ ¼ 1, bubbles are stable for small R0, but
grow without bound beyond a threshold radius (here R0 ≈ 1 μm).
The maximum equilibrium radius achieved before the transition
to instability is R�

e.
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These predictions compare well with DLS experiments
that claim to produce bulk nanobubbles. Here we consider
studies in which bubbles are nucleated and characterized in
liquid of the same ionic strength (instead of generating the
“nanobubbles” in distilled water before tuning the ionic
concentration [34,35], possibly violating charge conserva-
tion). For a monovalent electrolyte at room temperature,
a widely used empirical formula [56] states that κ−1≈
0.304=

ffiffi
I

p
nm, where I is the ionic strength in M (or mol

L−1). Objects thought to be bulk nanobubbles correspond to
DLS peaks at Re ¼ 80, 100, and ∼1000 nm for 1 μM [39],
2 mM [8], and 1 M [39,62] solutions (corresponding to
κ−1 ¼ 300, 6.8, and 0.3 nm), respectively. Previously, it
was speculated that the increase of Re with ionic strength
arises because electrolyte screening increases their propen-
sity to coalesce into larger bubbles [41]. However, this
hypothesis is not universally accepted, as Marangoni
coarsening of the thin liquid film between approaching
bubbles [63–65] could conversely discourage coalescence.
Our model attributes the observed variation between Re and
κ−1 to the change in the electrocapillary stress balance in
individual bubbles, instead of mutual interactions.
Finally, we offer an explanation for the observation in

DLS experiments that bulk nanobubbles are almost always
smaller than 1 μm. Size selection of spherical bubbles is
achieved in two ways. First, finite oversaturation estab-
lishes a maximum possible equilibrium radius R�

e. Figure 4
shows the loci of Re in the parameter space of ðκ−1; ReÞ,
varying 0 < ζ < 4. For ζ ¼ 0, the locus is uninterrupted, so
bubbles always reach an equilibrium radius; but the finite
oversaturation ζ > 0 locus diverges from the ζ ¼ 0 locus
and terminates at a maximum R�

e. We show these loci in
Fig. 4(a) for a fixed R0 and ψ0 ¼ −5 and −40 mV, and in
Fig. 4(b) for ψ0 ¼ −20 mV and R0 ¼ 1 and 3 μm.
Oversaturation ζ > 0 is required for nanobubbles to

nucleate, through mechanical aeration of the water [10]
or water-ethanol exchange [66,67], ζ ∼ 1–3 being generally
reported. However, we also note that nanobubbles gener-
ated through external energy input in an environment
without substantial oversaturation (e.g., by pressure varia-
tions [36,68] or electrochemistry [8]) can exist in stable
equilibrium, too. Once nucleated, these bubbles are stable
in exactly saturated (ζ ¼ 0) liquids.
Second, through buoyancy, all bubbles will rise through

the liquid and leave the system [69], unless they are small
enough that the work done by buoyancy ∼ρlgR4 (where ρl
is the liquid’s density) is comparable to thermal energy kBT.
Balancing these terms yields a buoyancy threshold radius
R�
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ρlg

4
p

≈ 1 μm (g ≈ 10 ms−2 is the gravitational
constant), above which a bubble is buoyancy unstable; this
regime is shaded pink in Fig. 4. Once oversaturation
establishes a size maximum and buoyancy removes all
large bubbles, only submicron nanobubbles remain, con-
sistent with the claims of DLS experiments that bulk
nanobubbles have a maximum radius below approximately
1 μm [3,34].
In conclusion, our Letter rationalizes the stability of bulk

nanobubbles in aqueous systems, in defiance of the
“Laplace pressure bubble catastrophe” [3]—the seemingly
inevitable fate of either dissolution or unbounded growth.
Exploiting the experimental observation that the zeta
potential of a shrinking microbubble abruptly deviates
from its planar value below a radius of 10 μm, our model
shows that bulk nanobubbles can potentially be stabilized
by a mechanism of accumulating surface charge density.

(a) (b)

FIG. 3. Stable equilibrium radii Re of bulk nanobubbles under
the spectrum of Debye lengths of 1 Å < κ−1 < 1 μm, for ζ ¼ 0.
(a) Initial zeta potentials ψ0 ¼ −5, −10, −20, and −30 mV [from
bottom to top] and R0 ¼ 500 nm. (b) Initial radii R0 ¼ 0.25, 0.5,
1.0, 2.0, and 4.0 μm [from bottom to top] and ψ0 ¼ −20 mV.
The solid lines in (a),(b) denote solutions calculated from
Ohshima’s solution of the spherical Poisson-Boltzmann equation
[Eq. (3)], while the dashed lines are the planar approximation,
i.e., Grahame equation [Eq. (3) for κR0 ≫ 1].

(a)

(b)

FIG. 4. Oversaturation and buoyancy influence size selection in
bulk nanobubbles. The loci of stable equilibrium radii Re as a
function of Debye length κ−1, for (a) fixed R0 ¼ 1 μm, and
initial zeta potentials ψ0 ¼ −5 and −40 mV, and (b) fixed
ψ0 ¼ −20 mV, and initial radii R0 ¼ 1 and 3 μm. These curves
are calculated using Ohshima’s equation [Eqs. (3) and (4)].
Unbroken lines correspond to the ζ ¼ 0 locus. As the over-
saturation ζ increases from 0 < ζ < 4, bubbles establish a finite
maximum equilibrium radius R�

e, which decreases with increas-
ing oversaturation. Buoyancy ensures that large bubbles over-
come thermal energy and rise out of the bulk liquid at a threshold
radius R�

b ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ρg

4
p

∼ 1 μm, which is shaded pink.
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While our results provide a theoretical basis for the viability
of bulk nanobubbles, a definitive statement on their
existence must be based on authoritative experimental
validation, such as by coupling DLS with complementary
techniques that probe the compressibility of suspended
objects in liquid.
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Note added—We refer the reader to a recent dark-field
microscopy study by Jin et al. [70], which reports that
microbubbles shrink according to Epstein-Plesset dynamics
before abruptly stabilizing at radii ∼100 nm.
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