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We present numerical evidence of a critical-like transition in an out-of-equilibrium mean-field
description of a quantum system. By numerically solving the Gross-Pitaevskii equation we show that
quantum turbulence displays an abrupt change between three-dimensional (3D) and two-dimensional (2D)
behavior. The transition is observed both in quasi-2D flows in cubic domains (controlled by the amplitude
of a 3D perturbation to the flow), as well as in flows in thin domains (controlled by the domain aspect ratio)
in a configuration that mimics systems realized in laboratory experiments. In one regime the system
displays a transfer of the energy towards smaller scales, while in the other the system displays a transfer of
the energy towards larger scales and a coherent self-organization of the quantized vortices.
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The phenomena of condensation and phase transitions
in statistical mechanics has traditionally been associated
with equilibria. However, observations of turbulence in
experiments of gaseous Bose-Einstein condensates (BECs)
[1–3] and of superfluid 4He [4–6] have shown that these
out-of-equilibrium systems can also display multiple
phases. In particular, recent BEC experiments close to a
two-dimensional (2D) regime, instead of a tendency
towards disorder, display an intriguing out-of-equilibrium
self-organization and the nucleation of quantized vortices
[7–9] (see Refs. [10,11] for numerical studies).
In classical turbulence, a reminiscent process can take

place when flows are 2D. Under certain conditions, the
kinetic energy can undergo an inverse cascade (moving to
larger scales), and eventually create a condensate [12]. This
condensation is of a different nature than a BEC as it
involves the kinetic energy of the system instead of its mass
density. In classical three-dimensional (3D) turbulence,
recent developments indicate that this far-from-equilibrium
system can change its behavior as its dimensionality is
changed [13–16] (or, equivalently, as one of its spatial
dimensions is compactified, see Ref. [13], and Ref. [17] for
an example of a transition under compactification in
gravitational theories). In classical fluids, when the flow
is 3D energy undergoes a direct cascade (moving to smaller
scales), while as the domain that contains the fluid is made
thiner, the system becomes 2D and displays an inverse
cascade after a critical second-order transition.
Both classical and quantum turbulence involve nonlinear

and complex spatiotemporal dynamics of fields, and

cascadelike solutions can develop in many different cases.
In this Letter we address the following questions: Is there a
transition in the behavior of quantum turbulence as its
dimensionality is changed as reported in recent quantum
turbulence experiments [7–9]? And is this transition asso-
ciated with the emergence of different out-of-equilibrium
self-similar regimes (i.e., associated with a change in the
direction of the energy cascade)? To this end, we study
numerically 3D condensates in periodic boundary condi-
tions using the Gross-Pitaevskii equation (GPE), exploring
two configurations. In one, we solve the equations in a
cubic domain and perturb an initial 2D random array of
quantized vortices with a 3D perturbation, varying the
amplitude of the perturbation as a control parameter. In the
other, we consider a quasi-2D array of quantized vortices
and vary the aspect ratio of the domain, compactifying
one of its dimensions. In both cases we find evidence of
an abrupt transition towards a regime that displays two-
dimensionalization, spatial aggregation of quantized vor-
tices, and inverse energy flux.
To describe the dynamics of weakly interacting bosons

of mass m at zero temperature we solve numerically the
GPE [18], iℏ∂tψ ¼ −ℏ2∇2ψ=ð2mÞ þ gjψ j2ψ , where ψ is
the condensate wave function and g is proportional to
the scattering length. The fluid density, velocity, and
quantized vortices can be obtained from ψ using
Madelung’s transformation (see Ref. [18]). The GPE is
solved using a parallel pseudospectral method [19,20]. To
achieve the largest possible scale separation (at a fixed
spatial resolution), we resort to periodic boundary
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conditions in a 3D domain of size Lx × Ly × Lz, with
spatial resolution Nx × Ny × Nz. The size of the domain is
Lx ¼ Ly ¼ L⊥ ¼ 2π in dimensionless units in all cases,
and Lz ¼ γL⊥, where γ is the domain aspect ratio. In these
domains, we prepared a set of randomly distributed 2D
vortices with a small 3D perturbation of amplitude Az, such
that the wave function is a solution of the GPE, and that the
incompressible kinetic energy of the system peaks at an
intermediate wave number k0 ≈ 10 (i.e., the correlation
length of the flow is l0 ≈ L⊥=10; see Ref. [18] for more
details on the preparation of the initial conditions and for
the definition of the incompressible kinetic energy). This
results in quantized vortices with a random separation, and
that are perfectly 2D for Az ¼ 0 while they display stronger
curvature in z for increasing Az.
As previously mentioned, we consider two ways to

observe a transition between 2D and 3D flows using these
initial conditions. One of them consists in varying the
amplitude of the 3D perturbation Az between 0 and 1 in a
cubic domain. The other is to vary the aspect ratio of the
domain for fixed Az (the 2D limit case being that in which
γ ¼ Lz=L⊥ → 0, and the 3D case when γ ¼ 1). In each
case, when varying the control parameters between their
two limits, classically we can expect an inverse cascade of
energy in the 2D regime, and the absence thereof in the 3D
case. To identify the direction of the cascades we consider
two quantities: the incompressible kinetic energy spectrum
Ei
kðkÞ (see Refs. [18,21,22] for a detailed description

of energy components in the GPE) and the total energy
flux ΠðkÞ ¼ −dE<ðkÞ=dt, where E<ðkÞ is the total energy
of the system integrated up to wave number k, E<ðkÞ ¼R
k
0 Eðk0Þdk0, and where EðkÞ is the total energy spectrum
[18]. A direct cascade of energy corresponds to the
development of a power law in Ei

kðkÞ for k > k0 and with

ΠðkÞ > 0 constant in a range of wave numbers, while an
inverse cascade of energy corresponds to a growth of Ei

kðkÞ
for k < k0 and with ΠðkÞ < 0. As the system has no
external steering force (but no dissipation either), an inverse
cascade can only develop for a transient time [23], and in
the following we will focus on time averages of these
quantities between t ¼ 1 and 10 flow turnover times, as
well as on their time evolution over the same time span
(with the turnover time defined as τ ¼ l0=U, with U the
rms initial flow velocity).
In cubic domains (γ ¼ 1) we performed two sets of

simulations, with spatial resolutions of Nx × Ny × Nz ¼
2563 and 5123 grid points, varying the amplitude of the 3D
perturbation Az. For large values of Az the flow quickly
evolves into a 3D regime, with quantized vortices rapidly
being deformed, while for small Az there is a long transient
in which the flow remains quasi-2D (see the videos in
Ref. [18]). Figure 1(a) shows the time average of Ei

kðkÞ
for the simulations with 5123 grid points, and for different
values of Az. For large values of Az initial vertical gradients
in the quantized vortices are large, and the spectrum peaks
at k ≈ k0 followed by a spectrum compatible with a direct
energy cascade and with the emission of Kelvin waves at
wave numbers smaller than the inverse mean intervortex
distance [20]. The energy fluxes in Fig. 1(b), specially for
Az ¼ 1, are positive for all k and remain approximately
constant for a range of wave numbers k > k0. But for small
values of Az initial vertical gradients are small, and the
energy spectrum grows for k≲ k0, developing a power law
compatible with Kolmogorov scaling, and with negative
total energy flux for k≲ k0 (albeit the negative flux does
not remain constant with k, as a result of limited spatial
resolution and of the inverse cascade being only transient in
the absence of external forcing). In spite of this, the system

(a)

(b)

(c)

(d)

FIG. 1. (a) Spectrum of the incompressible kinetic energy averaged between t ¼ 1 and 10 for simulations in cubic domains
(Nx ¼ Ny ¼ Nz ¼ 512) and different values of Az. Kolmogorov power laws ∼k−5=3 are indicated as a reference by solid black lines. The
vertical dashed line indicates the inverse mean intervortex distance. Note the growth of energy and a ∼k−5=3 scaling for k≲ 10 when Az
is small. (b) Total energy fluxes for the same simulations. For small Az the flux becomes negative for k ≲ 10, and the positive flux for
k > 10 decreases. References for the values of Az in (a) and (b) are provided in the inset. (c) Same as in (a) for simulations in thin
domains, for different values of γ. (d) Same as in (c) for simulations in thin domains; the inset gives the values of γ. In all panels, dashed
curves highlight simulations for which movies are available in Ref. [18].
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develops a strong inverse transfer of energy, at least up to
t ¼ 10. For longer times the flow eventually becomes
unstable and 3D. However, we verified that the 2D behavior
is not simply due to an absence of 3D motions for Az ≪ 1.
For t≲ 10, when the systems display an inverse transfer
of energy, the energy in the 3D modes for all Az ≠ 0 is
significant enough to nonlinearly act back to the 2D part of
the flow and saturate its initial exponential growth, but not
strong enough yet to suppress the inverse transfer.
Figures 1(c) and 1(d) show similar results for simulations

with a fixed value of Az ¼ 0.1 (such that a 3D flow with
a direct energy cascade is generated when γ ¼ 1), but
with different aspect ratios γ, using a spatial resolution
Nx ¼ Ny ¼ 512, and with Nz varied between 512 and 32
grid points to keep the vertical resolution Δz fixed or over-
resolved as Lz is decreased, so that vertical gradients in the
flow are always correctly resolved. Although the amplitude
of the perturbation Az is fixed, by decreasing γ we also
increase the wave number of the vertical perturbation
(i.e., vertical variations of quantized vortices increase as
the domain becomes thinner). As in the cubic domain,
we observe an increase in Ei

kðkÞ for k≲ k0 and a range of
wave numbers with ΠðkÞ < 0 but now for small values
of γ, and a direct cascade of energy for large values of γ.
But, unlike the case of the cubic domain, when γ is
sufficiently small the flow remains quasi-2D for very long
times, and quantized vortices aggregate in physical space
creating larger structures (see movies in the Supplemental
Material [18]).
To quantify the transition between the direct and inverse

cascade regimes, we need to use (as an order parameter) an
observable that measures the relative strength of the inverse
energy cascade. To this end we first introduce the mean
inverse flux at small wave numbers (which is zero when the
flux is positive), and the mean direct flux at large wave
numbers, respectively, defined as

Π< ¼
����min

�
0;

1

k0

Xk0
k¼0

ΠðkÞ
�����; ð1Þ

Π> ¼ 1

kmax − ðk0 þ 1Þ
Xkmax

k¼k0þ1

ΠðkÞ; ð2Þ

where kmax ¼ Nx=3 is the maximum resolved wave number
in the simulations, and k0 is as before the wave number
where the incompressible kinetic energy is initially con-
centrated. We can then compute the total energy flux (in
both directions) Πtot ¼ Π< þ Π>, and define the normal-
ized ratio of inverse energy flux to total energy flux
Π<=Πtot. Figure 2 shows the behavior of this quantity
for all cases studied, as a function of the amplitude of the
3D perturbation normalized by its critical value Az=Ac

z (for
spatial resolutions of 2563 and 5123 grid points), and as a
function of the aspect ratio normalized by its critical value

γ=γc (for fixed Az). In all cases we see an abrupt change as
the control parameter is varied. For Az=Ac

z or γ=γc > 1 there
is no inverse energy flux, while for Az=Ac

z or γ=γc < 1 it
grows rapidly (albeit differently in each case). In the thin
domains, from Fig. 1 it can be seen that γc ≈ 0.1, corre-
sponding to a domain with Lz ¼ L⊥=10 ≈ 11ξ (where ξ is
the healing length of the condensate, proportional to the
vortex core radius). This implies that the 2D behavior
occurs when the height of the domain is of the same order
as the correlation of the initial conditions, γc ≃ l0=L⊥,
a similar condition for the layer height and the forcing
length scale found for the compactified case in classical
flows [13]. In other words, a transition towards 2D behavior
does not require 2D domains or very slim films. Even
moderate aspect ratios are enough to trigger an inverse
energy cascade.
Energy fluxes, although they give a direct indication of

the presence of an inverse cascade, are not easily meas-
urable in laboratory experiments. There are, however, other
global quantities that are tractable experimentally and can
also give an indication of a transition from 3D to 2D
behavior in the flows as the control parameters are varied.
Figure 3 shows the incompressible kinetic energy Einc in
these flows as a function of time, both for 5123 simulations
in cubic boxes with different Az as well as for simulations
in domains with different γ, and for each case, also the
total length of the vortices as a function of time. In the
simulations with large Az or γ, Einc decays in time after
t ≈ 1, as the direct cascade of energy transfers the incom-
pressible kinetic energy to smaller scales where it dissipates
into phonons [20,21,24]. However, for small Az or γ, Einc
remains constant in time or decays very slowly, indicating
energy remains at large scales as in classical 2D turbulence.
The same behavior is seen in the total vortex length [18,21],
which grows and reaches a maximum in the 3D regime as a
result of vortex stretching (later decaying as a result of
vortex reconnection), but which remains approximately
constant for all times in the cases of small Az or γ, pointing

FIG. 2. Ratio of inverse energy flux to total energy flux as a
function of the normalized control parameter Z (either Az or γ,
normalized by their respective critical values Ac

z or γc, see inset).
For cubic domains two curves are shown, corresponding to
spatial resolutions of 2563 and 5123 grid points.
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to the absence of vortex stretching as expected in 2D flows.
Vortex reconnection also plays an important role at early
times for large Az or γ, to speed-up the three-dimension-
alization of the flow, after which vortex stretching can
become more efficient. Finally, it is also important to note
that in the simulations in cubic domains the total length of
the vortices remains approximately constant at early times
in all cases, and that the time when vortex stretching starts
increases as Az decreases. This is consistent with our
previous observations: In the cubic box, for smaller values
of Az the flow remains quasi-2D for longer times, and the
observed transient inverse cascade delays the growth of 3D
excitations in the flow.
Given the above we can consider various quantities that

can indicate the presence of a sharp transition. Here we
focus only on the thin layer case that is somehow closer to
what is experimentally realizable. Figure 4 shows the time
to reach the maximum vortex stretching tmax, the maximum
length of the vortices lmax, and the flow integral scale L as a
function of γ, which is obtained from the incompressible
kinetic energy spectrum as L ¼ 2π

R
k−1Ei

kðkÞdk=R
Ei
kðkÞdk, and provides an estimation of the flow energy

containing scale. When L ≈ Lx (the domain size), the flow
has self-organized at the largest available scale in the
domain. These quantities display an abrupt change near
the critical value γc as γ is varied. The time tmax is larger
when γ < γc, while the maximum vortex length is larger
when γ > γc. Both behaviors are to be expected when the
flow is 3D and displays vortex stretching, or when the flow
is 2D and as a result does not. Finally, the flow integral
scale L becomes larger (and close to Lx) when γ < γc. This
indicates that the inverse transfer of energy leads to the
concentration of kinetic energy at large scales, and implies
the formation of large structures in the flow (e.g., resulting

from spatial aggregation of vortices). In the simulations
varying Az, we also verified that the overall shape of the
quantities in the curves in Fig. 4 remain the same when
changing the spatial resolution of the simulations, although
the actual values (e.g., the time tmax or the maximum vortex
length lmax) depend on the resolution: at larger resolution
the flow becomes more turbulent and vortex stretching is
more efficient.
The numerical results show the existence of a transition

between 2D and 3D behavior in quantum turbulence. This
transition can be obtained by varying the dimensionality
of the flow (in a 3D cubic domain), or by changing the
aspect ratio of the domain and compactifying one spatial
dimension. Below critical values of the controlling
parameters the flows display an inverse transfer of energy
which results in the growth of the incompressible kinetic
energy at large scales, and in the aggregation of quantized
vortices. For the quasi-2D regimes the system suffers an
interesting double condensation: the BEC, and the out-of-
equilibrium inverse energy cascade which can result in a
condensation of the kinetic energy at the largest available
scales in the system [12]. This behavior is compatible
with critical transitions reported in classical turbulence
[13–16], and reminiscent of recent observations in experi-
ments of gaseous BECs [7–9]. For the 3D cubic domain,
the critical amplitude of the 3D perturbation is Ac

z ≈ 10−2

(for the 5123 simulations), while in the thin domains the
critical aspect ratio is γc ≈ 1=10. As our system is not
forced, the inverse energy cascade can only develop as a
transient (see, e.g., Ref. [23] for a discussion of the
equivalent configuration in the classical case), a configu-
ration which is comparable to experiments of gaseous
BECs where the flow is let to freely decay after initially
stirring it [1–3]. However, in experiments of gaseous
BECs the condensate is trapped inside a potential, which

(a)

(b)

(c)

FIG. 4. (a) Time to reach the maximum length of the vortices as
a function of γ=γc. (b) Normalized maximum total length of the
vortices, lmax=Lx, as a function of the control parameter. (c) Flow
integral length scale normalized by the domain size, L=Lx, as a
function of the same control parameter.

(a)

(b)

FIG. 3. Time evolution of the incompressible kinetic energy
(a) in simulations in cubic domains with different perturbation
amplitudes Az (5123 runs), and (b) in simulations in domains with
different aspect ratios γ. The insets show the total vortex length
[18] as a function of time for each case. References are as in
Fig. 1; a few labels are provided as guidelines.
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we are not considering in our simulations to increase the
scale separation between the domain size and the vortex
radius as much as possible. The study of the effect of
trapping potentials in these cascades is left for
future work.
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