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Scattering processes are typically sensitive to the incident wave properties and to interference effects
generated via wave-matter interactions with the target. We challenge this general belief in the case of
targets that undergo time-periodic modulations encircling quasiadiabatically an exceptional point in a given
parameter space. When the scattering dwell time is above a critical value τc, the scattered field is
surprisingly insensitive to the properties of the incoming wave and local operational details of the driving.
Instead, it reaches a fixed point attractor that can be controlled by the direction of the driving cycle. For
dwell times below τc, the unusual robustness is abruptly suppressed. Such protocols may become useful
tools in control engineering, including the management of thermal and quantum fluctuations.
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Introduction.—Wave scattering from naturally occurring
or engineered media carries information about the proper-
ties (e.g., shape, internal constitution) of the scattering
object itself, convoluted with the impinging signal. A
challenge in modern technology is to manage, amplify,
alter, or encrypt this information. The traditional methods
used to achieve these goals rely on the manipulation of the
constituent properties of the scattering medium and/or on
the appropriate preparation of the interrogating wave. Well-
known examples include metamaterials and transformation
optics [1–10], and the enhancement of absorption [11–16]
or the improvement of transmission through complex
media [17,18] by wavefront optimization. The advent
of non-Hermitian wave physics [19–23] has opened alter-
native avenues for the manipulation of the scattered
fields. Representative examples include the phenomena
of unidirectional invisibility [24–26], asymmetric transport
[27–30], and PT -symmetric lasers [31,32]. When com-
bined with the manipulation of time degrees of freedom
(e.g., via periodic time modulation of system parameters)
non-Hermitian physics leads to new opportunities, such as
chiral adiabatic state-flip [33–37], reconfigurable perfect
absorbers [38–40], bypass of Chu’s limit [41], etc. While
most of these achievements have been implemented in
photonics, other areas like atomic and quantum systems
[42–44], optomechanics [35,45,46], acoustics [25,47], and
electronics [48] have also benefited from these develop-
ments. In all these cases, the scattered fields demonstrate
complex interference patterns, which are very sensitive to
the incident wave properties and to interferences generated
due to intricate wave-matter interactions occurring when
the incident signal engages the target.
In this Letter, we propose to manage the scattered fields

via a carefully chosen quasiadiabatic modulation of the
parameters of the target, such that their variation forms a

closed path (loop) around an exceptional point (EP) in a
two-parameter space. We will show that when the dwell
time of the scattering process exceeds a critical value, the
scattered field becomes insensitive to local details of the
parametric path and to the specific features of the incident
wave. The overall response only depends on the direction
(clockwise versus counterclockwise) of the closed path.
The eigenvectors of the scattering matrix play the role of
“fixed-point attractors” in the dynamical scattering process.
This exotic scattering response is analyzed theoretically
using coupled mode theory and its validity is confirmed
using a realistic electronic circuit setup.
Coupled mode theory modeling.—We consider a

system of two coupled modes n ¼ 1; 2 with periodic,
time-modulated frequencies ϵ1 ¼ ϵðtÞ ¼ ϵðtþ 2π=ΩÞ and
ϵ2ðtÞ ¼ −ϵðtÞ, and corresponding decay and amplification
rates γ1 ¼ −γ=2 and γ2 ¼ γ=2. The coupling κðtÞ ¼ κðtþ
2π=ΩÞ between the two modes is also time dependent with
modulation frequency Ω. The dynamics of this system is
described by a time-dependent coupled mode theory
(CMT)

i
djΨðtÞi

dt
¼ H0ðtÞjΨðtÞi;

H0ðtÞ ¼
�
ϵðtÞ − iγ

2
κðtÞ

κðtÞ −ϵðtÞ þ iγ
2

�
; ð1Þ

where hnjΨðtÞi ¼ ψnðtÞ describes the field amplitudes at
modes n ¼ 1, 2. The evolution of this time-dependent
system is described in terms of the instantaneous (i.e., at a
fixed time t) eigenvectors fjλtlig (l ¼ 1; 2) and eigenvalues
fλtlg of the Hamiltonian H0. The latter are
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λt1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϵðtÞ − iγ

2

�
2

þ κðtÞ2
s

; ð2Þ

with corresponding instantaneous eigenvectors

jλt1;2i ¼
1ffiffiffiffiffiffiffiffiffi
N1;2

p �
κðtÞ; λt1;2 − ϵðtÞ þ i

γ

2

�
T
; ð3Þ

where N1;2 ¼ 2λt1;2½λt1;2 − ϵðtÞ ∓ iγ=2�. For fixed parame-
ters ðϵ; κÞ, Eqs. (2) and (3) indicate that the system Eq. (1)
supports exceptional point (EP) spectral degeneracies.
These degeneracies occur at ðϵ − iγ=2Þ2 þ κ2 ¼ 0 and
are associated with the coalescence of both eigenvalues
and eigenvectors. In the example of Eq. (1) we find that a
necessary condition to realize an EP is to have ϵ ¼ 0. Under
this condition, we have an EP degeneracy when κ ¼ γ=2. It
turns out that the quasiadiabatic evolution of any initial
preparation under Hamiltonian H0ðtÞ results in a final state
corresponding to one of the two eigenstates Eq. (3), when
the parameters ½ϵðtÞ; κðtÞ� change quasiadiabatically form-
ing a closed loop around an EP. The dominant eigenvector
of this final state is uniquely determined by the handedness
of the EP encirclement in the parameter space. This
surprising effect has been recently confirmed in microwave
and optomechanical systems [34,35]. The phenomenon
has been coined chiral mode switching and since its
confirmation has attracted much attention, with a number
of subsequent studies addressing various aspects in the
framework of its Hamiltonian evolution [33,36,38–40].
Here we depart from the Hamiltonian framework of

chiral mode switching dynamics and address the following
question: are there any traces of this chiral physics in the
scattering framework, and, if yes, how do they manifest
themselves in the scattered signal? Notice that when the
system is coupled to leads, new timescales (e.g., the dwell
time) emerge that affect (and even alter) the physics
associated with the Hamiltonian dynamics of Eq. (1).
Scattering setup.—We proceed by turning the system of

Eq. (1) into a scattering target, see Fig. 1(a). We assume a
scenario where an incident monochromatic wave jSþi ¼
ðsþ1 ; sþ2 ÞTe−iωt of frequency ω [49] enters the structure from
both sides n ¼ 1, 2. In the most general case, its compo-
nents are random variables, i.e., sþl ¼ Sþl e

iϕl (l ¼ 1, 2)
where Sþl and ϕl are random numbers.
The coupled mode equations that describe the scattering

process take the form

i
djΨðtÞi

dt
¼ Heff jΨðtÞi þ iDjSþðtÞi;

jS−ðtÞi ¼ −jSþðtÞi þDT jΨðtÞi; ð4Þ

where jΨðtÞi is the field inside the scatterer and
jS−ðtÞi ¼ ðS−1 ðtÞ; S−2 ðtÞÞT is the outgoing scattered
wave evaluated at some position, with components

S−l ðtÞ ¼
R
exp ð−iωtÞŜlðωÞdω. The effective Hamiltonian

Heff in Eq. (4) describes the dynamics of the field inside
the target and takes into consideration its leakage to the
continuum. It has the form

Heff ¼ H0ðtÞ − ði=2ÞDDT ; D ¼
ffiffiffiffiffiffi
2Γ

p
Î; ð5Þ

where H0ðtÞ is given by Eq. (1), D describes the coupling
of the isolated system to the continuum and Î is the 2 × 2
identity operator. For simplicity, we will assume below that
jΨðt ¼ 0Þi ¼ 0. Finally, for concreteness, we will use a
quasiadiabatic driving scheme ϵ1ðtÞ ¼ −r sinφðtÞ, κðtÞ ¼
κ0 þ r cosφðtÞ where φðtÞ ¼ Ωtþ π=4 and Ω is the
modulation frequency.
It is tempting to argue, based on the similarities between

the first Eq. (4) and the time-dependent CMT Eq. (1) that
describes the dynamics of an isolated system, that the
temporal evolution of the field jΨðtÞi is the same for the
isolated and the scattering setups. There are, however,
important differences between these two scenarios.
Specifically, in Eq. (4) there is a “noise” term associated
with the incident monochromatic wave and an extra
“dissipative” term in the effective Hamiltonian that
modifies the internal dynamics, see Eq. (5). The latter is
described by the coupling operator D, which introduces a

FIG. 1. (a) A scattering setup where an EP degeneracy is
adiabatically encircled via the variation of two parameters.
Magenta arrows indicate a fixed outgoing scattering field which
is independent from incident excitations with random amplitudes
and phases (yellow arrows of different width); (b) CW encircle-
ment leads to a scattered field that has a “fixed-point” attractor
determined by the mode jμt1i (i.e., the normalized weight
amplitude b̃2 ¼ 0) for Γ < Γc. For Γ > Γc, the scattered field
is random, i.e., both b̃1;2 depend on the input. (c) The same as in
(b) but now for a CCW encirclement. In this case the scattered
signal is dominated by jμt2i, i.e., b̃1 ¼ 0 for Γ < Γc. The sharp
transition at Γ ¼ Γc is indicated with the transparent green plane.
We assumed that γ ¼ 1 (unit of frequency).
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new time scale τ ∼ 1=Γ. It defines the time for which the
field dwells inside the target before it decays back into the
continuum.
Analysis of scattered fields.—We decompose the out-

going wave jS−ðtÞi in terms of the eigenvectors fjμtlig
(l ¼ 1, 2) of the instantaneous scattering matrix St as
jS−ðtÞi ¼ b1ðtÞjμt1i þ b2ðtÞjμt2i. The relative weights
b1;2ðtÞ have been evaluated after an initial transient—
typically associated with times t larger than two or three
periods of the driving.
The matrix St is then derived from Eq. (4), assuming a

steady state solution. It takes the form:

Stjμti¼μtjμti; St¼−Îþ iDTGt
effD; Gt

eff ¼
1

ωÎ−Ht
eff

;

ð6Þ
where Ht

eff ¼ Heffðt ¼ fixedÞ indicates the instantaneous
Hamiltonian Eq. (5) at time t. In our case of D ¼ ffiffiffiffiffiffi

2Γ
p

Î,
eigenvectors of St are the same as the eigenvectors of H0

and do not depend on the incident frequency ω.
Figures 1(b) and 1(c) show the real and imaginary

parts of the normalized weights b̃l ¼ bl=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb1j2 þ jb2j2

p
;

(l ¼ 1, 2) versus the coupling strength Γ for two counter-
encirclements of the EP. For each value of Γ, we generated
a number of incident waves with components ðsþ1 ; sþ2 Þ
having normally (uniformly) distributed random relative
amplitudes (phases). We find an abrupt transition occurring

above a critical coupling strength Γc [marked by the
transparent green plane in Figs. 1(b) and 1(c)] from a
“deterministic” to a “random” scattered wave. Below Γc the
scattered field is chiral, i.e., it consists of only one
eigenmode of the instantaneous scattering matrix St,
while its projection to the other basis vector is negligible.
The specific eigenstate that represents the scattered field
depends on the encircling handedness of the parametric
loop around the EP. For example, in case of Fig. 1(b) where
the parameters ½ϵðtÞ; κðtÞ� encircle the EP in a clockwise
(CW) direction, the coefficient b̃2 ≈ 0 while b̃1 remains on
the unit circle irrespective of the specific features of the
incident wave. When the encircling is counterclockwise
(CCW), the coefficient b̃1 ≈ 0 while b̃2 remains on a unit
circle, see Fig. 1(c). Above Γc, the scattered field is, in
general, a linear combination of both eigenvectors fjμt1;2ig
with b̃n reflecting the dependence of the outgoing field on
the specific properties of the incident waves.
The abrupt transition from a chiral fixed point attractor to

a stochastic scattered signal is also evident from the
analysis of the outgoing fields in the channel representa-
tion, i.e., jS−ðtÞi ¼ ðS−1 ðtÞ; S−2 ðtÞÞT . In Figs. 2(a) and 2(b)
we show the real and the imaginary part of the ratio
between the left and right outgoing scattered fields S−2 =S

−
1

for two values of Γ, being above or below Γc ≡ 1=τc. We
also show the scattered field for a CW and a CCW
encircling around the EP. The results reconfirm the con-
clusions drawn from the previous analysis using the

FIG. 2. (a) An ensemble of initial waves jSþi is sent into a quasiadiabatically modulated linear target when the coupling to the
continuum [indicated by the green plane in the ImðλÞ axis of the spectrum of H0] is weak in comparison with the cumulative
amplification that the field experiences during one driving cycle. The solid trajectories on the eigenfrequencies surfaces represent the
measure pðtÞ ¼ ½ja1ðtÞj2λt1 þ ja2ðtÞj2λt2�=½ja1ðtÞj2 þ ja2ðtÞj2�, which quantifies the relative weight with which each instantaneous
eigenvalue and the corresponding eigenvector jλt1;2i participate in the internal evolution. The weights a1;2 are evaluated via the
decomposition of the evolved state jΨi in the instantaneous basis ofH0. At the end of the CW (CCW) loop around an EP (upper [lower]
subfigures) the field inside the scatterer is dominated by only one eigenmode, residing at the blue (red) Riemann surface. This internal
dynamics overwhelms the outgoing signal, jS−i ¼ ðS−1 ; S−2 ÞT , whose ratio S−2 =S−1 reaches a fixed-point attractor (see red and blue points
at the outgoing panel). (b) The same as in (a) but for a strong coupling to the continuum. In this case, the outgoing signal is largely
influenced by the properties of the incident wave.

PHYSICAL REVIEW LETTERS 124, 133905 (2020)

133905-3



instantaneous scattering matrix basis, see Figs. 1(b)
and 1(c). Namely, for Γ < Γc, the relative scattered right
over left field amplitudes are insensitive to the character-
istics of the incident wave [see Fig. 2(a)] and depend only
on the handedness of the encirclement; for Γ > Γc the
relative scattered right over left amplitudes vary widely,
becoming highly sensitive to the characteristics of the
initial wave. We have confirmed via simulations that the
scattered fields demonstrate the same features as the ones
shown in Figs. 1(b), 1(c), 2(a), and 2(b) irrespective of the
incident frequency ω in a broad frequency range
ω ∈ ½−2γ; 2γ�. For loops far away from an EP, the scattered
field appears to be again sensitive to the shape of the
incident wave [50].
The existence of a chiral fixed-point attractor in the

scattered field for Γ < Γc is particularly intriguing. A
heuristic explanation of its occurrence is given by consid-
ering the extreme case in which, during the parametric
cycle, the field jΨðtÞi inside the scatterer follows the
instantaneous eigenstate of the effective Hamiltonian
Ht

eff corresponding to an eigenvalue that has the largest
imaginary part. The total amplification (or attenuation)
experienced by such mode at the end of the evolution cycle
is I ≈

R 2π=Ω
0 max½Imðλteff;1; λteff;2Þ�dt, and it splits in two

contributions: one associated with the amplification or
attenuation due to the evolution under H0ðtÞ and one
due to a pure attenuation mechanism attributed to the
“escape” of the field to the continuum. These two com-
peting mechanisms determine the magnitude of the internal
field jΨðtÞi, see the first Eq. (4), which influences the
formation of the scattered wave. The latter, according to
Eq. (4b), consists of two terms: the leaking internal field
and the incoming wave, corresponding to the second and
first term in Eq. (4). If I > 0, the leaking internal field will
dominate over the incident wave and it will determine the
form of the scattered field. If, on the other hand, I < 0 (due
to strong coupling to the continuum), the internal field will
eventually subside and the waves jSþðtÞi will strongly
influence the form of the scattered field jS−i.
The above argument assumes that the internal quasia-

diabatic dynamics [50] is not affected by the presence of the
radiative losses (due to coupling to the continuum) and the
additive incoming fields jSþðtÞi [see the first Eq. (4)].
Indeed, we have analytically shown (see the Supplemental
Material [50]) that this assumption is valid.
Electronic circuits.—We validated these predictions

using an electronic circuit scattering setup. The circuit
consists of two LC resonators (dimer), see Fig. 3, one being
lossy due to the presence of a resistor R, while the other one
experiencing a balanced amount of gain due to
an amplifier −R. The inductances L at both resonators
are equivalent. The capacitances at the left and right
resonators are C1 ¼ Cð1 − ϵÞ and C2 ¼ Cð1þ ϵÞ, respec-
tively, where ϵ ≪ 1 is a time-modulated parameter.
Each LC resonator (ϵ ¼ 0; R → ∞) has a resonant angular

frequency ω0 ¼ 1=
ffiffiffiffiffiffiffi
LC

p ¼ 2π GHz and resonant imped-
ance Z0 ¼

ffiffiffiffiffiffiffiffiffi
L=C

p ¼ 70 Ohms. The two resonators are
coupled via a capacitor Cc ¼ κC. The circuit is connected
to transmission lines (TL), represented through their
Thevenin equivalent, consisting of a grounded voltage
source connected in series to the reference resistance
R0 ¼ 50 Ohms and capacitively coupled through Ce ¼
δC to the nodes of the left and right resonators, V1 and V2,
see Fig. 3.
Using Kirchoff’s laws, we evaluated the parameters for

which the isolated circuit (Ce ¼ 0) has EP degeneracies
[50]. The eigenfrequencies of this system are

ω2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2κ − γ2Þ2 − 4γ2

p
þ 2ð1þ κÞ − γ2

2ð1þ 2κÞ ð7Þ

where ω ¼ ω̃=ω0 and γ ≡ Z0=R. Consequently, the EP
occurs whenever the term inside the square root is zero, i.e.,
κ ¼ γð1þ γ=2Þ. A quasiadiabatic loop around the EP is
realized by a time-variation of the capacitances of each
of the two LC resonators and of the coupling capacitance,
i.e., ϵðtÞ ¼ ϵ0 sinðΩtÞ and κ ¼ κ0½1þ l cosðΩtÞ�, where
Ω ¼ 1 MHz is the modulation frequency and ϵ0 ¼ 0.05,
l ¼ 0.3, and κ0 ¼ 0.105.
The incident (monochromatic) voltages waves jSþV ðtÞi ¼

ðsþ1 ; sþ2 ÞTeiω̃t ¼ 1
2
ðVs

1; V
s
2ÞTeiω̃t are generated by driving the

nodesVL andVR (see Fig. 3),with time dependent (Thevenin
equivalent) voltage sources vs1;2ðtÞ ¼ ReðVs

1;2e
iω̃tÞ. We

have considered an ensemble of incident waves resulting
from voltage sources with random amplitudes Vs

1ð2Þ and

FIG. 3. Electric-circuit scattering setup where a quasiadiabatic
encirclement of an EP degeneracy can lead to a chiral control of
the scattered field when the coupling to TLs is smaller than a
critical value. The outgoing scattered field, jS−Vi ¼ ðS−1 ; S−2 ÞT , has
an attractor determined by the direction of encircling (bottom
left). When the coupling to the continuum is large, the outgoing
field is sensitive to the specific features of the incident field.
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phases [50]. The outgoing waves at the two transmission
lines are written as jS−VðtÞi ¼ ½S−1 ðtÞ; S−2 ðtÞ�T , where
v−1;2ðtÞ ¼ RefS−1;2ðtÞg. We have evaluated the outgoing
voltages at multiples of the driving period and after a
transient time of two-three driving periods [51]. Figure 3
shows that, for weak coupling to the transmission lines, the
system reaches a fixed-point attractorwhich depends only on
the direction of the loop encircling the EP. In contrast, when
the coupling to the TL is strong, the outgoing signal
demonstrates a sensitivity to the preparation of the incident
wave, see Fig. 3.
Conclusions.—We have investigated the scattering from

an adiabatically driven target which supports an EP
degeneracy. We find that the scattered field is insensitive
to the shape of the incident wave and the operational details
of the driving. This occurs when the parametric path of the
driving encircles the EP and the dwell time of the scattering
process is above a critical value τc. The latter is associated
with the inverse growth rate of the field inside the scattering
target during one period of the adiabatic driving. Under
these conditions, the scattered field approaches a fixed
point. The sensitivity to the incident wave is abruptly
regained when the dwell time becomes smaller than τc. We
have tested the validity of these results in an electronic
circuit. It will be interesting to test this robustness of the
outgoing field against initial conditions in more challeng-
ing scattering scenarios where, for example, chaotic scat-
tering prevails [52,53].
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