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We study the fundamental limit on the localization precision for a subwavelength scatterer embedded in
a strongly scattering environment, using the external degrees of freedom provided by wavefront shaping.
For a weakly scattering target, the localization precision improves with the value of the local density of
states at the target position. For a strongly scattering target, the localization precision depends on the
dressed polarizability that includes the backaction of the environment. This numerical study provides new
insights for the control of the information content of scattered light by wavefront shaping, with potential
applications in sensing, imaging, and nanoscale engineering.
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Localizing a small object in a complex scattering
environment using wave scattering is a widespread problem
in many fields, including material and life sciences. For
instance, in nanofabrication, it is essential to control the
manufacturing of structured samples and notably to localize
defects in microelectromechanical systems (MEMS) [1],
semiconductor chips [2,3], or photonic crystals [4]. In life
sciences, studying the inner structure of the cell implies the
localization of nanoparticles or fluorophores in scattering
environments, for instance in particle tracking experiments
[5,6]. Multiple scattering of acoustic waves or microwaves
also complicates indoor localization of emitting or scatter-
ing devices [7,8]. Yet, for many applications, characterizing
complex scattering materials by solving the inverse prob-
lem is still possible thanks to the large amount of prior
information available to the observer through design
considerations [9,10]. For this class of problems, defining
and maximizing the information content of the data on a
specific scattering object is a critical step in order to reach
the best possible precision for imaging and metrology
applications.
Estimation theory provides a definition of the precision

in the estimation of a parameter (for example the position of
a target) through the Cramér-Rao inequality [11]. This
inequality sets a lower bound to the variance of the
estimated value of the parameter, known as the Cramér-
Rao lower bound (CRLB). This bound depends on different
features of the physical model, including the statistics of the
measurement noise, the intrinsic properties of the scattering
medium as well as the illumination and detection scheme.
This theoretical limit has found useful applications in the
design of optical imaging setups, for instance in the context
of dynamic single-molecule measurements [12], diffuse
optical imaging [13], or lifetime measurements [14,15].
The CRLB has also been proposed to define the resolution

of an imaging system [16,17]. Furthermore, the concept is
widely used to assess the localization precision in super-
resolution imaging techniques based on single-molecule
detection [18–20]. Recently, the idea arose that the locali-
zation precision of single molecules could be improved by
spatially modulating either the incident or the emitted field
to minimize the CRLB [21,22]. In parallel, advanced
wavefront protocols were developed to control wave propa-
gation in strongly scattering media [23], notably enabling
the focusing of light waves inside materials [24–29]. It is
plausible that the localization precision for a hidden target
can be improved by focusing light upon it, however this
situation has not been rigorously analyzed so far.
In this Letter, we address this question by studying the

fundamental limit in the precision on the localization of a
subwavelength scatterer enclosed in a strongly scattering
medium. We find out that the local environment of the
target strongly influences the resulting localization preci-
sion. For a weakly scattering target (that is, when recurrent
scattering between the target and the environment can be
neglected), the key parameter driving the localization
precision is the local density of states (LDOS), which is
a fundamental quantity affecting many aspects of light-
matter interaction such as spontaneous emission and
thermal emission [30,31]. For a strongly scattering target,
the localization precision depends on the dressed polar-
izability of the scatterer, which describes the backaction of
the environment beyond the weak-coupling regime [32].
These results offer new insights to improve the perfor-
mances of imaging and metrology techniques using wave-
front shaping.
We consider a model system composed of two-

dimensional scatterers arranged in a slab geometry, as
represented in Fig. 1. One scatterer, located in the center of
the system, is chosen as the target to be localized. The other
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scatterers, with random positions, define a complex scatter-
ing medium. In this way, we can investigate universal
properties of the localization precision of the target, without
being influenced by features specific to a given scattering
nanostructure. This model of a scattering medium has been
used for the description of basic problems in mesoscopic
physics [33,34], up to the regime of Anderson localization
[35,36]. It is similar to that used in Ref. [37] to study the
inverse reconstruction of the position of fluorophores. In
order to constrain the problem, we assume that only the
position r0 ¼ ðx0; z0Þ of the target is unknown. The goal is
then to estimate the two coordinates of the target using
coherent illumination at a wavelength λ ¼ 2π=k, where k is
the wave number in vacuum. We further assume that the
incident field is either a plane wave or a sum of plane waves
with equal amplitude and different incidence angles, as
generated in practice by a phase-only spatial light modu-
lator (SLM). The response of the subwavelength scatterers
is described by an electric polarizability α and a scattering
cross section σs ¼ k3jαj2=4. We denote the polarizability of
the target by α0, and take its scattering cross section to be
λ=1000, ensuring that this scatterer is weakly coupled to its
environment. We take the polarizability of the other
scatterers at resonance (α ¼ 4i=k2), which is not an
essential feature of the model but allows us to maximize
their scattering cross sections, and therefore to minimize
the number of scatterers needed to reach the multiple-
scattering regime. In order to compute the scattered field,
we use the coupled dipole method, which is an exact
formulation of the scattering problem in the limit of
scatterers much smaller than the wavelength [38]. This
method allows us to calculate the average (or expected)
pixel intensity as measured by a camera located in the
image plane of an ideal imaging system, which images the
output plane z ¼ Lz (see Supplemental Material [39],
Section I).
Any measurement process is intrinsically probabilistic

due to noise fluctuations that limit the precision on the
determination of the position of the target in otherwise
perfect conditions. Thus, the measured data must be
described by a random variable X. The joint probability
density function pðX; θÞ of the dataset, parameterized by

the set of unknown parameters θ to be estimated, is used to
define the Fisher information matrix [11]

½F ðθÞ�jk ¼
��∂ lnpðX; θÞ

∂θj
��∂ lnpðX; θÞ

∂θk
��

: ð1Þ

Here h� � �i denotes the average over noise fluctuations.
While any noise statistics can be included in the formalism,
we assume here that values measured on different pixels of
the camera are statistically independent and follow a
Poisson distribution, which corresponds to an experiment
limited only by photon noise. The information matrix is
then expressed by

½F ðθÞ�jk ¼
XN
i¼1

1

Ii

�∂Ii
∂θj

��∂Ii
∂θk

�
; ð2Þ

where N is the total number of pixels and Ii is the average
value of the intensity measured by the ith pixel. From
Eq. (2), we can compute the CRLB, which bounds the error
in the determination of the parameter θj, by

Cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½F−1ðθÞ�jj

q
: ð3Þ

While there exists no general methodology to build an
efficient estimation algorithm that reaches the CRLB,
maximum likelihood estimation is the most popular
approach to obtain practical estimators that are asymptoti-
cally efficient [11]. Moreover, it is possible to obtain an
explicit expression of such an estimator, in the limit of small
parameter variations and for a large number of detected
photons (see Supplemental Material [39], Section II). This
estimator may be used to estimate the position of the target
even when the positions of the scatterers that constitute the
scattering environment are known with some uncertainties
(see Supplemental Material [39], Section III).
The CRLB can be evaluated in our model system by

computing the average value of the intensity reaching
the camera pixels using the coupled dipole method, and
by evaluating the derivatives in Eq. (2) using a finite
difference scheme. As only the coordinates of the target
need to be estimated, we define C ¼ ðCx; CzÞ where Cx
and Cz are the CRLB on each coordinate. For the calcu-
lations, we choose λ ¼ 633 nm and an average incident
intensity (integrated over the invariant y coordinate) of
I0 ¼ 104 photons per μm. One can then easily deduce the
CRLB for other values of λ and I0 by noting that the CRLB
scales with λ and with I−1=20 . In order to study the influence
of multiple scattering on the precision in the estimation of
the target position, we generate different random configu-
rations of the medium that we illuminate with a plane wave
at normal incidence, and we study the statistical distribution
of the Cramér-Rao bound, with the statistics now per-
formed with respect to disorder. Changing the density of

FIG. 1. Representation of a slab composed of several dipole
scatterers and illuminated by a SLM. In all simulations, the
thickness of the system is set to Lz ¼ 10λ, and the transverse
dimension is set to Lx ¼ 50λ.
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scatterers ρs allows us to modify the independent scattering
(or Boltzmann) mean free path l ¼ ðρsσsÞ−1 [40]. In Fig. 2
we show the first two moments of the CRLB distribution as
a function of kl. In the single-scattering regime (l≳ Lz),
the average CRLB depends on the coordinate to be
estimated (x0 or z0), as expected for one isolated scatterer.
In contrast, for l < Lz, the average CRLB is the same for
both coordinates due to multiple scattering that restores
isotropy. In this regime, the probability distribution of the
CRLB follows a log-normal distribution (see Supplemental
Material [39], Section IV), whose moments strongly
depend on the scattering mean free path. We also observe
that the average CRLB shows a minimum in this regime,
demonstrating that on average multiple scattering improves
the localization precision. Finally, when the localization
length becomes on the order of the size of the medium, the
CRLB strongly increases due to the onset of Anderson
localization which suppresses light transmission [41] [we
use ζ ¼ l expðπkl=2Þ as a rough approximation of the
localization length [42] ].
The CRLB provides a figure of merit that can be

optimized using the external degrees of freedom provided
by wavefront shaping. In order to test the optimization of
information in the presence of multiple scattering, we
generate 1000 configurations of the medium in the diffusive
regime (kl ¼ 9.7, optical thickness Lz=l ¼ 6.5), assumed
to be illuminated using a phase-only SLM composed of
Ne ¼ 64 elements. We then minimize the CRLB using a
global optimization algorithm based on simulated
annealing [43]. The optimized field distribution weakly
depends on the initial guess fed to the optimization
algorithm (see Supplemental Material [39], Section V),
which suggests that the obtained solutions are close to the
global optimum.We show in Fig. 3(a) and 3(b) the intensity

around the target for a scattering medium illuminated by
incident fields independently optimized for the determi-
nation of x0 and z0, respectively. The incident wavefront
associated with the highest information content depends on
the coordinate to be estimated, with the appearance of
intensity hot spots in the vicinity of the target. The
formation of such hot spots might be interpreted as a
possible trade-off between optimization of the intensity and
of the intensity gradient at the target position. Comparing
the intensity I at the target position when optimizing the
CRLB to the intensity Imax obtained after a direct opti-
mization of the intensity on the target, we observe that the
intensity ratio I=Imax varies from zero to one [Fig. 3(d)].
This confirms that determining the most informative wave-
front cannot be reduced to a simple optimization of the
intensity at the position of the targeted scatterer. We also
show in Fig. 3(c) the intensity around the target obtained by
minimizing a single CRLB associated with the estimation
of both coordinates Cxz ¼ kCk2. In that case, we observe
that optimizing the CRLB is not strictly equivalent to
optimizing the intensity at the target position, but the
distribution of I=Imax at the target position becomes
strongly skewed towards unity [Fig. 3(d)].
In the shot-noise limit, the CRLB scales with the

reciprocal of the square root of the number of interactions
between the probe field and the target [44], which is here
given by the power scattered by the dipole. Since this power
is proportional to jdj2 (where d is the dipole induced in the
target), on average, we can expect the CRLB to scale with
jdj−1. The induced dipole can be expressed as the sum of an

FIG. 2. CRLB as a function of the normalized scattering mean
free path kl for plane-wave illumination. Dotted lines correspond
to l ¼ Lz (defining the transition to the multiple-scattering
regime) and dashed lines correspond to ζ ¼ Lz (defining the
onset of Anderson localization). Each point represents the geo-
metric mean over 1000 configurations of the disordered medium,
and error bars represent 1-sigma intervals. The inset shows the
same data on a smaller scale.

(a)

(c) (d)

(b)

FIG. 3. Intensity I=I0 around the target for a scattering medium
illuminated by a wavefront optimized for (a) the transverse
coordinate x0, (b) the longitudinal coordinate z0, and (c) both
coordinates simultaneously. An area of 2λ × 2λ is displayed on
each map. (d) Histogram of the intensity ratio I=Imax at the target
position when optimizing for x0, z0 and both coordinates
simultaneously.
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excitation by the external local field, and a contribution
resulting from backaction by the environment. This can be
written as [32]

d ¼ α0ϵ0Eexcðr0Þ þ α0k2Sðr0; r0Þd; ð4Þ

where S ¼ G −G0 is the difference between the Green
function in the presence of the medium and the free-space
Green function, and Eexcðr0Þ is the excitation field at the
target position, generated by scattering of the incident field
by the other scatterers. From Eq. (4), we can define a
dressed polarizability α̃ ¼ α0½1 − α0k2Sðr0; r0Þ�−1 such
that d ¼ α̃ϵ0Eexcðr0Þ. This simple relation is a convenient
starting point to investigate the cases of weakly and
strongly scattering targets.
For a weakly scattering target (jα0k2Sðr0; r0Þj ≪ 1),

backaction from the medium is negligible and we can
write α̃ ≈ α0. In this regime, the strength of the induced
dipole jdj2 depends mainly on the intensity of the excitation
field at the target position jEexcðr0Þj2. After the optimiza-
tion of Cxz, we observe that the intensity at the target
position scales with the LDOS (see Supplemental Material
[39], Section VI). This is in agreement with a known result
related to wave focusing in complex media by time reversal
[45]. Consequently, we can expect the CRLB to scale with
the reciprocal of the square root of the LDOS at the
target position. To prove this assertion, we remove the
target and calculate the LDOS ρ ¼ 2k=ðπcÞIm½Gðr0; r0Þ�
at the target position. Introducing the free-space LDOS
ρ0, the normalized LDOS at the target position is then
expressed by ρ=ρ0 ¼ 1þ 4Im½Sðr0; r0Þ�. The normalized
LDOS can be calculated numerically with the coupled
dipole method, using a dipole source located at r0.
Calculating ρ=ρ0 and Cxz for 1000 configurations, we
observe a negative correlation between the LDOS at the
target position and the optimized CRLB (Fig. 4),

characterized by a correlation coefficient of −0.69 calcu-
lated on log-transformed variables. This result clearly
demonstrates that the localization precision of a weak
scatterer improves with the value of the LDOS at its
position. Furthermore, fitting a power law to numerical
observations shows that the optimized CRLB scales with
ρ−1=2, which is the expected scaling of error in the shot-
noise limit. We surmise that an even stronger correlation
between ρ=ρ0 and Cxz could be observed with a more
complete control of input and output modes.
For a strongly scattering target that recurrently scatters

the field, the interaction between the target and its
environment has to be treated beyond the weak-coupling
approximation. To investigate this regime, we set the
polarizability of the target on resonance (α0 ¼ 4i=k2).
The induced dipole depends on the dressed polarizability
α̃, which exhibits a pole for α0k2Sðr0; r0Þ ¼ 1. Near this
pole, we can expect the strength of the induced dipole
jdj2 to scale with jα̃j2 and the CRLB to scale with jα̃j−1.
This is confirmed by calculating jα̃=α0j2 and Cxz for
1000 configurations, as shown in Fig. 5. Indeed, we
observe that jα̃=α0j2 and Cxz are strongly correlated (with
a correlation coefficient of −0.77 calculated on log-
transformed variables), and that the optimized CRLB
roughly scales with jα̃j−1.
In summary, we have introduced a rigorous framework

to study and optimize the precision of localization
measurements for a subwavelength scatterer in a com-
plex medium. For a weakly scattering target, we have
shown that the lower bound on the localization precision
depends on the LDOS at the target position. In contrast,
the localization precision is driven by the dressed
polarizability when recurrent scattering is significant.
These results clarify the role of multiple scattering
effects for metrology and imaging applications, as well
as resulting fundamental limitations [46]. Our work also

FIG. 4. Left: Cxz for a weakly scattering target as a function of
the normalized LDOS. The black line is a fit to the optimized data
by a power law with an exponent of −1=2 (a linear regression
gives an exponent of −0.46). Right: Observed distribution of the
CRLB. Log-normal distributions (solid lines) are fitted to
numerical observations (data points).

FIG. 5. Left: Cxz for a strongly scattering target as a function of
the normalized effective scattering strength jα̃=α0j2. The black
line is a fit to the optimized data by a power law with an exponent
of −1=2 (a linear regression gives an exponent of −0.36). Right:
Observed distribution of the CRLB. Log-normal distributions
(solid lines) are fitted to numerical observations (data points).
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opens interesting perspectives in different research areas,
for instance to track biological nanoparticles in complex
environments [6] or to precisely estimate critical param-
eters of nanomanufactured samples [3]. While we have
shown that the CRLB can be calculated and optimized
using electromagnetic simulations, optimal wavefronts
could also be experimentally identified in unknown
scattering media by physically modulating the position
of the target, for instance using ultrasound-based tech-
niques [47,48]. Finally, we emphasize that the results are
not limited to light waves, and apply to all kinds of
waves, for instance to assess and optimize the localiza-
tion precision of acoustic sources [49] or in microwave
scattering experiments [50].
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