PHYSICAL REVIEW LETTERS 124, 133402 (2020)

Time Dependence of Few-Body Forster Interactions among Ultracold Rydberg Atoms
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Rubidium Rydberg atoms in either || sublevel of the 36 p; /2 state can exchange energy via Stark-tuned
Forster resonances, including two-, three-, and four-body dipole-dipole interactions. Three-body
interactions of this type were first reported and categorized by Faoro et al. [Nat. Commun. 6, 8173
(2015)] and their Borromean nature was confirmed by Tretyakov et al. [Phys. Rev. Lett. 119, 173402
(2017)]. We report the time dependence of the N-body Forster resonance N x 365 [2m|=1/2 = 36512+

3751/, + (N —2) x 36p; /2)m;|=3/23 for N = 2, 3, and 4, by measuring the fraction of initially excited atoms

that end up in the 37, ), state as a function of time. The essential features of these interactions are captured
in an analytical model that includes only the many-body matrix elements and neighboring atom
distribution. A more sophisticated simulation reveals the importance of beyond-nearest-neighbor

interactions and of always-resonant interactions.
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Understanding  few-body and many-body inter-
actions is of near universal importance, with relevance to
problems in atomic, condensed matter, and nuclear physics.
Experiments with ultracold atoms and molecules have
significantly advanced that understanding. For example,
the spin lattice that forms when polar molecules are confined
with an optical lattice may be useful in modeling quantum
magnetism and topological insulators [1,2]. Precise control
over the interactions in systems of ultracold atoms has
recently been realized in a variety of experiments. The few-
body universal quantum states predicted by Efimov [3] have
been observed and studied extensively in ultracold gases
[4,5]. Progress with dipolar quantum gases includes the
observation of stable quantum droplets in a dysprosium
Bose-Einstein condensate [6], the observation of angular
oscillations of quantum droplets, analogous to the behavior
of nuclei, induced by the dipole-dipole interaction [7], and
the discovery of a regime with supersolid properties [8].

Dipole-dipole mediated energy exchange in an amor-
phous ultracold Rydberg gas has been studied extensively
over the past two decades [9,10]. Precise line shape
measurements have contributed to our understanding of
the importance of many-body and always resonant
exchange in this system [11-15]. Recently, resonant energy
transfer between Rydberg atoms and polar molecules has
also been observed [16,17].

Less attention has been given to the time evolution of
resonant energy exchange in this system. A Ramsey inter-
ferency measurement was used to explore dephasing due to
always resonant processes [18]. Rabi oscillations in the
energy exchange between a pair of isolated atoms has been
seen [19,20] along with energy exchange between two well-
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separated macroscopic samples [21]. Computational and
experimental results that image the time dependence of the
energy exchange hint at the possibility of localization in this
system [22-24]. Using a microwave field to initiate a
quantum quench, Orioli et al. have explored relaxation of
an ultracold Rydberg gas [25]. Further exploration of the
time evolution of energy exchange in ultracold Rydberg
gases may ultimately shed light on many-body localization
and thermalization that complements recent work in other
spin systems [26-28].

Resonant few-body dipole-dipole interactions with
Rydberg atoms were discovered and studied only recently.
Gaurian et al. observed a four-body resonant interaction in
cesium that lies between, and relies on, a pair of two-body
interactions [29]. Faoro et al. reported on a simpler three-
body process in cesium and developed a theory for a class
of similar few-body interactions applicable to many
Rydberg atoms [30]. More recently, Tretyakov et al
observed the same type of three-body interaction in
rubidium Rydberg atoms while conclusively demonstrating
the Borromean nature of the energy exchange [31].
Additional work has studied coherence of this interaction
and its suitability for use in a quantum gate [32,33].

In this Letter, we report on the time dependence of the
two-, three-, and four-body dipole-dipole interactions in
rubidium

p+p—s+s, (1)
prp+p—=s+s+7p, (2)
p+p+p+p-os+s+p+p, (3)
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where the state labels have been abbreviated p =
36p3/24m|=1/2> S =3TS172, P ' =36p3/2)m,=3/2, and
s’ = 36s,,,. We present a simple model of the time
evolution that is able to approximately describe the shape
of the time-dependence curve, though it neglects always-
resonant and beyond-nearest-neighbor interactions. In con-
trast, a full many-body simulation matches the experiment
more closely, revealing the importance of these physical
processes.

The resonant interactions of Egs. (1)—(3) are indicated by
solid arrows in the Stark map of Fig. 1(a). The two-body
exchange is resonant at an electric field of 3.29 V/cm.
Tuning to higher field introduces an energy defect that is
equal to E,—E, at 3.52 V/cm. A third p atom can
account for the defect via either of the equally detuned two-
body exchanges p+s' — s +p or p+s—s+p.
Similarly, the energy defect is 2(E, — E,/) at 3.80 V/cm
which requires a fourth p atom. One example of the many
possible four-body interactions is shown in Fig. 1(b). While
the few-body energy exchange can be perturbatively
calculated as a sequence of two-body interactions, it is
essentially Borromean in nature and requires all atoms to
participate simultaneously [31]. More Forster resonances
following this pattern are possible and are discussed
in Ref. [30].

In our experiment, about 10% #3Rb atoms are trapped in a
magneto-optical trap (MOT) of diameter ~0.5 mm. The
trapping laser at 780 nm cycles atoms between the 5s and
5p states. A 776 nm laser drives the 5p to 5d transition and
a 1265 nm laser excites atoms to the 36p state. Simulation
suggests a Rydberg density on the order of 10% cm™,
corresponding to an average spacing of about 20 pm.
Highly excited atoms then exchange energy through a
dipole-dipole interaction and the fraction of atoms in each
state is quantified using directed field ionization (DFI) [34].

A set of coaxial cylinders placed on either side of the
MOT allow us to apply static and time varying electric
fields [35]. To separate the p and p’ states, atoms are
excited in an electric field of 4.2 V/cm. The interaction
pulse, which is a square voltage pulse whose length and
amplitude can be varied, is then applied to one cylinder.

To determine the strength of this energy exchange, we
measure the fraction of atoms that end up in the s state. The
time-resolved field ionization signals from the s and p
states obtained using standard selective field ionization
(SFI) are almost completely overlapping. In addition, the
p-state signal causes ringing in our detector, which makes
quantitative measurement of the s’-state fraction difficult.
We therefore use DFI to better resolve the s and p states and
measure the s-state fraction [34-36]. Using a genetic
algorithm, DFI optimizes a small perturbation that is added
to an SFI ramp. This perturbation directs a fraction of
the s-state signal along a pathway through the Stark map
that ionizes early in time relative to that of the p-state
signal, allowing us to quantify the fraction of atoms that
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FIG. 1. (a) Stark map showing the s, p, s, and p’ energy levels

as a function of electric field. Solid arrows correspond to Forster
resonances for which the time dependence was studied, with
atoms are initially excited to the p state. Dotted lines are the
complementary set of resonances for an initial state of all p’
atoms. The dashed line is the location of the two-body p + p’ —
s + s’ resonance. (b) Energy level diagram of a possible four-
body interaction of Eq. (3). (c) Experimental s-state fraction as a
function of electric field for an initial state composed of p atoms
(solid line) or p’ atoms (dotted line).

end up in the s state. During optimization of the DFI
perturbation, the delay between excitation and the start of
the field ionization ramp is set to zero and no interaction
pulse is present. After optimization we add a fixed delay of
10 us between excitation and DFI to provide room for an
interaction pulse of varying amplitude and/or length.
During this 10 s window, blackbody radiation can drive
transitions to neighboring states. This leads to a constant
1.5% transfer to the s state in the absence of any dipole-
dipole interaction, which we subtract from our dipole-
dipole fraction measurements.

With the width of the interaction pulse fixed at 9 us, we
scan the amplitude to tune various interactions into reso-
nance. We alternate between exciting the p and p’ states
and average several thousand shots for each amplitude. For
a sample excited to the p state, the fraction of atoms that
end up in the s state is shown in Fig. 1(c) by the solid line.
In this scan we can clearly identify two-, three-, and four-
body resonant energy exchanges. We also see a feature at
the location of the p + p’ — s + s’ resonance, which is
marked by the dashed arrows in Fig. 1(a). We associate this
with an off-resonant energy exchange. First the off-
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resonant p + p — s + s’ populates the s + s’ state. From
this state, the resonant s + s — p + p’ can proceed. In
contrast to the resonant few-body interactions studied here,
this is an inefficient off-resonant multistep process that
seeds the p + p’ — s + s’ exchange.

Other features in the signal have yet to be understood. In
particular, we see a broad tail to the low field side of the
two-body exchange along with the small peak near
2.7 V/cm. The dotted lines in Figs. 1(a) and 1(c) show
the complementary set of resonances that occur with initial
excitation to the p’ state. The field axis is calibrated by
fitting the locations of the two-body resonances. We check
this calibration by measuring the splitting between the p
and p’ states. These two calibrations agree to within 5%.

We have also investigated the time dependence of the
two-, three-, and four-body interactions. To collect this
data, we scan the time that the interaction field is applied
for each of the three resonant fields at 3.29, 3.52, and
3.80 V/cm. The fraction of atoms in the s state as a
function of time is shown by the solid lines in Fig. 2 for
each of these three fields. The primary uncertainty in the s-
state fraction is due to systematic errors in calibration of
about 5%. This is larger than the statistical error since we
average over thousands of shots at each time.

For two atoms at fixed separation, the time dependence
should be given by Rabi oscillations; in fact, Ravets et al.
have observed Rabi oscillations between a pair of Rydberg
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FIG. 2. Fraction of atoms in the s state as a function of
interaction time for (a) the experiment (solid) compared to the
simple analytical model (dashed) and (b) the experiment (solid)
compared to the simulation (dashed). The two-, three-, and four-
body interactions are shown in blue, red, and green, respectively.
In (a), a density of 9.5 x 107 cm™ was chosen for the simple
model to match the initial slope of the two-body interaction. In
(b), the simulations were run at a density of 2.4 x 108 cm™.

atoms [20]. A more complicated, but still coherent,
oscillation is expected for few-body interactions in a close
triplet or quadruplet [33]. However, we have a different
amorphous sample of atoms on each shot of our laser,
which averages out the oscillations. The early time behav-
ior of Fig. 2 is dominated by high frequency oscillations
among closely spaced atoms, which drive the relatively
rapid increase in s-state fraction. This is followed by a
gradual approach to saturation due to more distant
interactions.

We can begin to understand the shape of the time
dependence curves for the N-body interactions by consid-
ering three main factors. First, as N increases, the saturation
level of the population transfer decreases so that one
expects the s-state fraction to eventually plateau at 0.25,
0.16,and 0.125for N =2, N = 3,and N = 4, respectively.
Second, the matrix elements decrease as N increases since
each additional two-body step brings in another factor of
the detuning. This is, however, somewhat mitigated by the
increasing number of paths from initial state to final state as
N increases. Finally, in an amorphous sample of atoms the
distance between a close pair will be less than the average
distance among close triplets or quadruplets.

We construct a simple analytical model comprised
of these three factors. We assume that the N-body inter-
action is dominated by contributions from clusters of N
atoms. The jth-nearest neighbor probability distribution is
given by

glrojlrogor) = dmrgpe” VI T) - (4)
where ry; is the distance from the central atom to its jth-
nearest neighbor and p is the Rydberg atom density [37,38].
Beyond-nearest-neighbor atoms may be closer to each
other than to the central atom. Since the =3 dependence
of the dipole-dipole interaction lends much greater weight
to closely spaced atoms and r;»); could be significantly
less than ry;, we average over the distances r(;»p);-

The matrix elements can be calculated perturbatively by
summing over all paths from the initial state |i) to the final
state |f) with

fi
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where | j) and |k) are intermediate states, §; is the detuning of
the jth intermediate state, and 6;; is the operator that takes
the jth state to the ith state. Since the dipole-dipole

133402-3



PHYSICAL REVIEW LETTERS 124, 133402 (2020)

interaction couples pairs of atoms, each operator 6 represents
a product of single-atom operators that take an individual
atom from an s state to a p state or vice versa [23,39].

For this simple model, we ignore the angular dependence
and simply multiply the summands in Eqgs. (6) and (7) by
the total number of possible paths from a given initial to a
given final state. We also consider 6 to be fixed for every
step, yielding

where u ~ 700 ea, and v = 600 eay are the transition dipole
moments p or p’ — s and p or p’ — s, respectively. There
are significantly more paths from initial to final state if +-m;
states are included.

The time dependence of the population transfer to the s
state among a cluster of N atoms should be oscillatory with
frequencies similar to wy and an amplitude determined by
the saturation level. Since we average the time dependence
over atomic separations, the particular form of the oscil-

_w _ 2w d 16(/"/ )’ lation is not important. We use (2N)~!sin?(wyt), where
w2_3’ 0)3_5 3 an W4 = 52 3 1 . . .
P 2723 My, (2N)~! gives the saturation level. The population fractions
(8) Py (t) transferred to the s state are
271,0/ e~(4/3)mr sin { ]dr (9)
0 }"

167p% (R °t
Py(1) = il / rope” Tty / U 1/ sin’ ) dOypdrgdrp, (10)
3 0 0 0 67'0] }’01 + r02 27'017'02 COS 912) 3/2

P4(t):16ﬂp*/ rgze” 43 ”/)r‘“/ ”02/ ”01/ /

X sin ('uy

where 6,; is the angle between 7, and 7; and the numerical
prefactor includes the saturation level. The two-body result
of Eq. (9) can be integrated analytically [15,40]. The three-
and four-body results in Eqs. (10)—(11) must be integrated
numerically. The integration is terminated at a radius R
large enough that it converges.

The time dependence of Egs. (9)—(11) is shown by
dashed lines in Fig. 2(a). The density was chosen to match
the initial slope of the model’s two-body time dependence
to the experimental data, yielding p=1.0(0.3)x 108 cm™3
This model captures the essential features of the exper-
imental curves. However, in attempting to match the two-
body data, it significantly underpredicts the three- and four-
body population transfer. This simple model ignores the
fact that the experimental three- and four-body time
dependence each include a contribution from the shoulder
of the two-body interaction. This could account for some,
but not all, of the disagreement.

Our simple model neglects always-resonant interactions
and beyond-nearest-neighbor interactions, which have been
shown to play a role in the dipole-dipole energy exchange
in a three-Rydberg-atom chain [41]. To address these
deficiencies, we have also simulated our system by con-
structing the Hamiltonian matrix using Eqgs. (5)—(7) while
averaging over the angular dependence [20,42], under the
assumption that the Rydberg atoms remain frozen in place
for the duration of the experiment. We randomly place

2
2 2
[5 ”m(r(n + ”02 — 2117z cos byy) 3 (”oz""’og — 27 o703 €08 63)

3/2} d01,d0y3dro droydrys,  (11)

|
40 atoms in a spherical volume of radius 34 pym, while
using the blockade radius to estimate a minimum distance
between atoms. We calculate the time evolution by solving
the Schrodinger equation on a supercomputer for each atom
and its closest 8 neighbors, resulting in a Hamiltonian
matrix of rank 48 620. The results are averaged over all 40
atoms and the process is repeated so that a few hundred
random instances are averaged. The simulated results,
which agree well with the data, are shown by the dashed
lines in Fig. 2(b).

Our simulations suggest that our Rydberg density is
2.4(0.1) x 10% cm™, where the statistical uncertainty was
calculated from multiple simulation runs at a range of
densities. By averaging over many random arrangements of
atoms at this density, we calculate average interaction
strengths of w, =162+6, w; =1.6+0.1, and w, =
0.7 £0.1 kHz for the two-, three-, and four-body inter-
actions, respectively. Since each of the resonant interactions
scale differently with density, one could potentially fit
simulations to the data to measure the Rydberg density of
the sample.

Our experiment is a quantum quench [43,44]. We
initially excite atoms to a many-body eigenstate of the
Stark Hamiltonian at an electric field where they are
noninteracting and then switch to the dipole-dipole inter-
action Hamiltonian by changing the field. The subsequent
time evolution can be broadly divided into two outcomes.
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The system can thermalize, eventually achieving an equi-
librium state that can be specified with a small number of
parameters. Or, in the case of many-body localization, the
system fails to thermalize and retains a memory of its initial
state [44-46]. Quenches have been used extensively to
study both many-body localization and thermalization
[25,46-49].

Since long-range dipole-dipole interactions should lead
to efficient energy transport, one expects our system to
thermalize. Indeed, for the two-body interaction this is what
we seem to observe as the s-state fraction saturates near the
expected level of 0.25. However, for the three-body and
especially the four-body interactions, the saturation level is
significantly lower than expected. This could indicate that
the system fails to thermalize. In fact, Nandkishore and
Sondhi have recently shown that many-body localization
could be possible even in systems with long-range inter-
actions [50].

To further investigate, we have extended our simulations
of the four-body interaction to longer times and higher
densities. The results show that the s-state fraction does not
saturate at the expected value of 0.125. Tavora et al.
[51,52], suggest using the survival probability of the initial
state as a criterion for numerically predicting thermal-
ization. A rapidly decaying survival probability is a sign of
thermalization as the memory of the initial state becomes
inaccessible due to the spread of entanglement throughout
the system. Our preliminary numerical analysis shows that
the initial state survival probability in the four-body case
does, indeed, decay significantly more slowly than for the
two-body interaction.

We have presented experimental data showing the time
dependence of few-body interactions in an amorphous
ultracold sample of Rydberg atoms. While the matrix
elements for the three- and four-body interactions are
reduced because of the detuning, these interactions are
stronger than one might expect because of the many paths
from initial state to final state. The densities extracted from
our simple model and our simulation differ by about a
factor of 2 or 3, revealing the importance of always-
resonant and  beyond-nearest-neighbor  interactions.
Finally, the population transfer saturation levels suggest
that the system may not thermalize as expected. Since the
four-body resonance is relatively well separated from the
two- and three-body peaks, it could prove useful for future
experiments studying thermalization and localization.

This work was supported by the National Science
Foundation under Grants No. 1607335 and No. 1607377.
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