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We present a Feynman integral representation for the general momentum-space scalar n-point function
in any conformal field theory. This representation solves the conformal Ward identities and features an
arbitrary function of nðn − 3Þ=2 variables which play the role of momentum-space conformal cross ratios.
It involves ðn − 1Þðn − 2Þ=2 integrations over momenta, with the momenta running over the edges of an
(n − 1) simplex. We provide the details in the simplest nontrivial case (4-point functions), and for this case
we identify values of the operator and spacetime dimensions for which singularities arise leading to
anomalies and beta functions, and discuss several illustrative examples from perturbative quantum field
theory and holography.
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Motivation.—The structure of correlation functions in a
conformal field theory (CFT) is highly constrained by
conformal symmetry. It has been known since the work of
Polyakov [1,2] that themost general 4-point function of scalar
primary operatorsOΔj

, each of dimensionΔj, takes the form

hOΔ1
ðx1ÞOΔ2

ðx2ÞOΔ3
ðx3ÞOΔ4

ðx4Þi ¼ fðu; vÞ
Y

1≤i<j≤4
x
2δij
ij ;

ð1Þ
where xij ¼ jxi − xjj are the coordinate separations and

2δij ¼
Δt

3
− Δi − Δj; Δt ¼

X4
i¼1

Δi: ð2Þ

The 4-point function is thus determined up to an arbitrary
(theory-specific) function f of the two conformal cross ratios,

u ¼ x213x
2
24

x214x
2
23

; v ¼ x212x
2
34

x213x
2
24

: ð3Þ

This result straightforwardly generalizes to n-point functions,
which now involve an arbitrary function of nðn − 3Þ=2 cross
ratios.

These results are easy to derive in position space where
the conformal group acts naturally. Yet for many modern
applications, including cosmology [3–6,6–19], condensed
matter [20–25], anomalies [26–28], and the bootstrap
programme [29–33], it would be highly desirable to know
the analog of this result—and, indeed, the analog of the
conformal cross ratios themselves—in momentum space.
Despite the lapse of nearly five decades, such an under-

standing has yet to be achieved. Nevertheless, through recent
efforts, all the necessary prerequisites are now in place. First,
the momentum-space 3-point functions of general scalar
and tensorial operators are known, including the cases
where anomalies and beta functions arise as a result of
renormalization [34–46]. Second, momentum-space studies
of the 4-point function have yielded special classes of
solutions to the conformal Ward identities [15,32,47–51].
Here, our aim is now to provide the general solution for the
momentum-space n-point function. We start by providing a
complete discussion of the 4-point function and an explora-
tion of its properties, and we then present the result for the
n-point function.
Momentum-space representation.—For scalar 4-point

functions, our main result is the general momentum-space
representation

⟪OΔ1
ðp1ÞOΔ2

ðp2ÞOΔ3
ðp3ÞOΔ4

ðp4Þ⟫

¼
Z

ddq1
ð2πÞd

ddq2
ð2πÞd

ddq3
ð2πÞd

f̂ðû; v̂Þ
Den3ðqj; pkÞ

: ð4Þ
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Here, h…i ¼ ⟪…⟫ð2πÞdδðPi piÞ, d is the spacetime
dimension, and the denominator is

Den3ðqj; pkÞ ¼ q2δ12þd
3 q2δ13þd

2 q2δ23þd
1 jp1 þ q2 − q3j2δ14þd

× jp2 þ q3 − q1j2δ24þdjp3 þ q1 − q2j2δ34þd;

ð5Þ
where the δij are given in Eq. (2). We work in Euclidean
signature throughout. As expected from Eq. (1), this
4-point function depends on an arbitrary function f̂ðû; v̂Þ
of two variables:

û ¼ q21jp1 þ q2 − q3j2
q22jp2 þ q3 − q1j2

; v̂ ¼ q22jp2 þ q3 − q1j2
q23jp3 þ q1 − q2j2

: ð6Þ

The role of û and v̂ is analogous to that of the position-
space cross ratios u and v defined in Eq. (3). These
variables are thus the desired momentum-space cross ratios,
though notice they depend on the momenta qj that are
subject to integration in Eq. (4).
Proof of conformal invariance.—The conformal invari-

ance of Eq. (4) can be verified by direct substitution into the
conformal Ward identities (CWIs). Its Poincaré invariance
is manifest, and its scaling dimension is given by the sum
of powers in Eq. (5) minus 3d from the three integrals.
This gives −2δt − 3d ¼ Δt − 3d, the correct result in
momentum space.
The remaining CWIs associated with special conformal

transformations are implemented by the second-order
differential operator Kκ ¼ P

3
j¼1K

κ
j, where [36]

Kκ
j ¼ pκ

j
∂

∂pα
j

∂
∂pα

j
− 2pα

j
∂

∂pα
j

∂
∂pκ

j
þ 2ðΔj − dÞ ∂

∂pκ
j
: ð7Þ

By acting withKκ on the integrand of Eq. (4), one can show

Kκ

�
f̂ðû; v̂Þ

Den3ðqj; pkÞ
�

¼
X3
n¼1

∂
∂qμn

� ðqnÞα
Den3ðqj; pkÞ

×

�
Aαμκ

ðnÞ û
∂f̂
∂ûþ Bαμκ

ðnÞ v̂
∂f̂
∂v̂ þ CαμκðnÞ f̂

��
:

ð8Þ
In order to write these coefficients explicitly, we define

Aαμκ
ðnÞ ¼ 2kβn

k2n
ðδκαδμβ − δμαδκβ − δμκδαβÞ; ð9Þ

where the kn are the vectors featuring in Eq. (5), i.e., k1 ¼
p1 þ q2 − q3 along with cyclic permutations. The coeffi-
cients in Eq. (8) are then

Cαμκð1Þ ¼
�
d
2
þ δ24

�
Aαμκ
ð2Þ þ

�
d
2
þ δ34

�
Aαμκ
ð3Þ ; ð10Þ

with Cαμκ
ð2Þ and Cαμκ

ð3Þ following by cyclic permutation of the

indices 1,2,3, while

Aαμκ
ð1Þ ¼ Aαμκ

ð2Þ ; Bαμκ
ð1Þ ¼ Aαμκ

ð3Þ − Aαμκ
ð2Þ ;

Aαμκ
ð2Þ ¼ −Aαμκ

ð1Þ ; Bαμκ
ð2Þ ¼ Aαμκ

ð3Þ ;

Aαμκ
ð3Þ ¼ Aαμκ

ð2Þ − Aαμκ
ð1Þ ; Bαμκ

ð3Þ ¼ −Aαμκ
ð2Þ : ð11Þ

As the action of Kκ on the integrand of Eq. (4) is a total
derivative, the integral itself is then invariant. This proves
the conformal invariance of the representation (4).
The tetrahedron.—The momentum-space expression (4)

is not the direct Fourier transform of the position-
space expression (1). Rather, for fðu; vÞ ¼ uαvβ, the
Fourier transform is given by Eq. (4) with

f̂ðû; v̂Þ ¼ Cδ12;δ34
β Cδ13;δ24

α−β Cδ14;δ23
−α ûαv̂β; ð12Þ

where

Cδ;δ0
σ ¼ 4δþδ0þ2σþdπd

Γðd
2
þ δþ σÞΓðd

2
þ δ0 þ σÞ

Γð−δ − σÞΓð−δ0 − σÞ : ð13Þ

This follows since the Fourier transform of a product is a
convolution of Fourier transforms, and so we can write

F
h
x2ðβþδ12Þ
12 x2ðβþδ34Þ

34 × x2ðα−βþδ13Þ
13 x2ðα−βþδ24Þ

24

×x2ð−αþδ14Þ
14 x2ð−αþδ23Þ

23

i

¼ F
h
x2ðβþδ12Þ
12 x2ðβþδ34Þ

34

i
� F

h
x2ðα−βþδ13Þ
13 x2ðα−βþδ24Þ

24

i

� F
h
x2ð−αþδ14Þ
14 x2ð−αþδ23Þ

23

i
; ð14Þ

where � denotes the convolution in all variables, namely,
ðf�gÞðpkÞ¼

R Q
4
j¼1½ddqj=ð2πÞd�fðqjÞgðpj−qjÞ. With the

f̂ in Eq. (12), the momentum-space integral in Eq. (4)
becomes

Wα;β ¼
Z

ddq1
ð2πÞd

ddq2
ð2πÞd

ddq3
ð2πÞd

1

DenðαβÞ3 ðqj; pkÞ
; ð15Þ

where

DenðαβÞ3 ðqj; pkÞ ¼ q2γ123 q2γ132 q2γ231 jp1 þ q2 − q3j2γ14
× jp2 þ q3 − q1j2γ24 jp3 þ q1 − q2j2γ34

ð16Þ
and

γ12 ¼ δ12 þ β þ d=2; γ13 ¼ δ13 þ α − β þ d=2;

γ23 ¼ δ23 − αþ d=2; γ14 ¼ δ14 − αþ d=2;

γ24 ¼ δ24 þ α − β þ d=2; γ34 ¼ δ34 þ β þ d=2: ð17Þ
This is a 3-loop Feynman integral with the topology of a
tetrahedron as presented in Fig. 1. The four momenta
entering the vertices are those of the external operators,
while the six internal lines describe generalized propagators
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in which the momenta are raised to the specific powers
given in Eq. (17).
Spectral representation.—Where convergence permits,

the function f̂ðû; v̂Þ can be expressed as a double inverse
Mellin transform over the monomial ûαv̂β. The 4-point
function (4) then admits the spectral representation

⟪OΔ1
ðp1ÞOΔ2

ðp2ÞOΔ3
ðp3ÞOΔ4

ðp4Þ⟫

¼ 1

ð2πiÞ2
Z

b1þi∞

b1−i∞
dα

Z
b2þi∞

b2−i∞
dβρðα; βÞWα;β ð18Þ

for an appropriate choice of integration contour specified
by b1 and b2. Here, Wα;β is a universal kernel correspond-
ing to the tetrahedron integral (15) and ρðα; βÞ is a theory-
specific spectral function derived from the Mellin transform
of f̂ðû; v̂Þ. Where the position-space Mellin representation
of a 4-point function is known—as is often the case for
holographic CFTs [52–54]—the corresponding ρðα; βÞ in
momentum space can be read off immediately using
Eqs. (12) and (13).
To evaluate the spectral integral, we close the contour

and sum the residues. For certain α and β, these residues are
simple to evaluate due to reductions in the loop order of
Wα;β. Such reductions arise whenever a propagator in the
denominator (16) appears with a power γij ¼ d=2þ n, for
some non-negative integer n. This can be seen by noting
that, in a distributional sense as q → 0,

lim
ϵ→0

ϵ

qdþ2n−2ϵ ¼
πd=2

4nn!Γðd=2þ nÞ□
nδðdÞðqÞ: ð19Þ

We then obtain a pole in α, β whose residue is given by
a 2-loop integral as shown in Fig. 2(a). Where the
external dimensions permit, such poles can also coincide.
In Fig. 2(b), we illustrate the case where α − β ¼ δ14 ¼ δ23,
creating a pair of delta functions δðq2Þδðp2 þ q3 − q1Þ for
which the residue is a 1-loop box.
Simplifications of a different kind occur whenever a

propagator in Eq. (16) appears with a vanishing power, or
more generally for γij ¼ −n. This results in a contraction of

the corresponding leg of the tetrahedron, producing a
1-loop triangle for which two of the legs are bubbles as
shown in Fig. 2(c). Evaluating the bubbles, one obtains a
pure 1-loop triangle whose propagators are raised to new
powers. This integral is equivalent to a general CFT 3-point
function [36]. The locality can be understood by noting

that a denominator q−2n corresponds to a factor x−ðdþ2nÞ
ij in

position space, which is equivalent to a delta function via
the position-space analog of Eq. (19).
Singularities and renormalization.—For special values

of the spacetime and operator dimensions, momentum-
space CFT correlators exhibit divergences requiring regu-
larization and renormalization. All divergences are local
can be removed through the addition of covariant counter-
terms giving rise to conformal anomalies and beta functions
for composite operators. The renomalization of 3-point
functions was studied in Refs. [38–40]. For 4-point
functions, a similar analysis holds as we now discuss.
First, renormalizability requires that all UV divergences

should be either ultralocal, with support only when all four
position-space insertions are coincident, or else semilocal,
meaning they are supported only in the cases where either
(i) x1 ¼ x2 ¼ x3 ≠ x4, (ii) x1 ¼ x2 ≠ x3 ¼ x4, or
(iii) x1 ¼ x2 ≠ x3 ≠ x4, along with all related cases
obtained by permutation. In momentum space, ultralocal
divergences are thus analytic in all the squared momenta,
while semilocal divergences are analytic in at least one
squared momentum. [Cases (i) and (ii) have a momentum-
dependence matching that of a 2-point function, while that
of case (iii) corresponds to a 3-point function.]
These divergences constitute local solutions of the CWI.

Their form, as well as the d and Δj for which they appear,
can be predicted from an analysis of local counterterms.
Such counterterms exist only in cases where

dþ
X4
j¼1

σjðΔj − d=2Þ ¼ −2n ð20Þ

for some n non-negative integer, with signs σj whose values
are either all minus, or else three minus and one plus.
Ultralocal divergences are removed by counterterms that

are quartic in the sources φj for the operators OΔj
. These

feature 2n fully contracted derivatives whose action is
distributed over the sources, and exist whenever Eq. (20) is

FIG. 1. The 3-loop tetrahedral integral (15), where each internal
line corresponds to a generalized propagator in Eq. (16).

(a) (b) (c)

FIG. 2. Simplifications of the kernel Wα;β: (a) where a
propagator in Eq. (16) appears with γij ¼ d=2þ n the loop order
is reduced by one; (b) with two such propagators we obtain a 1-
loop box; (c) for γij ¼ −n, we obtain a 3-point function.
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satisfied with all minus signs. Since the scaling dimension
of φj is d − Δj, this ensures the counterterm has overall
dimension d. The appearance of ultralocal divergences
when this condition is satisfied can be seen by examining
the region of integration where all three loop momenta
in the kernel Wα;β become large simultaneously.
Reparametrizing qj ¼ λq̂j, where q̂21 ¼ 1, as λ → ∞ the
denominator in Eq. (15) scales as λ6d−Δt ½1þOðλ−2Þ�, while
the numerator contributes a Jacobian factor

R
dλλ3d−1. The

λ integral is then logarithmically divergent precisely when
Eq. (20) is satisfied with all minus signs. (For nonzero n,
the divergence derives from expanding the denominator to
subleading order in powers of λ−2.) After the divergence is
subtracted and the regulator removed, the renormalized
correlator has the expected nonlocal momentum depend-
ence and obeys anomalous CWIs due to the RG scale
introduced by the counterterm, see Ref. [38].
Semilocal divergences are removed by counterterms

featuring one operator and multiple sources. For quartic
counterterms, we have 2n fully contracted derivatives
whose action is distributed over φ1φ2φ3OΔ4

. Such counter-
terms exist whenever Eq. (20) is satisfied with signs
ð− − −þÞ (or some permutation thereof), ensuring the
counterterm has dimension d. The resulting 4-point con-
tribution then has the momentum dependence of a 2-point
function and corresponds to case (i) above. This counter-
term effectively reparametrizes the source for OΔ4

and we
obtain a beta function in the renormalized theory.
The appearance of a semilocal divergence in Wα;β when

the ð− − −þÞ condition is satisfied can be seen by re-
parametrizing the loop momenta in Eq. (15) as q1 ¼ λq̂1
with q̂21 ¼ 1, q2 ¼ λq̂1 þ p3 þ l2 and q3 ¼ λq̂1 − p2 þ l3.
The λ integral is then logarithmically divergent when this
condition is satisfied, and has a semilocal momentum
dependence that is nonanalytic in p2

4 only. For the permuted
cases featuring OΔj

with j ¼ 1, 2, 3 in place of OΔ4
, the

corresponding reparametrization is simply qj ¼ λq̂j, leav-
ing the other loop momenta fixed. This difference reflects
our use of momentum conservation to eliminate p4 in
Eq. (15). After renormalization, the correlator is again fully
nonlocal and obeys anomalous CWIs reflecting the pres-
ence of the beta function, see Ref. [38].
Besides the quartic counterterms discussed above, which

contribute solely to 4- and higher-point functions, we may
also have cubic and quadratic counterterms. Their form is
already fixed from the renormalization of 2- and 3-point
functions [38–40,55], but they nevertheless contribute to
4-point functions as well [56]. In particular, cubic counter-
terms with two sources and one operator remove semilocal
divergences of types (ii) and (iii).
Free fields.—Consider a free spin-0 massless field ϕ and

connected 4-point functions of the operators of the form ϕn.
In all cases, the function f in position space is a sum of
monomials of the form uαvβ. For example, for the

connected 4-point function h∶ϕ2∶∶ϕ2∶∶ϕ2∶∶ϕ2∶iconn,
one has

fðu; vÞ ∼
�
u
v

�1
6
Δϕ2 þ

�
v
w

�1
6
Δϕ2 þ

�
w
u

�1
6
Δϕ2

; ð21Þ

where Δϕ2 ¼ d − 2 is the dimension of ϕ2, and to write f

and f̂ succinctly we introduce the additional conformal
ratios w and ŵ defined by uvw ¼ 1 and û v̂ ŵ ¼ 1.
Equation (12) now yields the momentum space f̂. In this
case, however, the prefactor in Eq. (12) vanishes as two out
of the six gamma functions in the denominator of Eq. (13)
diverge. This means we have to consider the regulated
expression with regulated f̂, namely,

f̂ðû; v̂Þ ¼ 16ϵ̃2
�
û
v̂

�1
6
Δ

ϕ2
−1
2
ϵ

þ 2 cycl: perms:; ð22Þ

where ϵ̃ ¼ ϵð4πÞd=2Γðd=2Þ and 2 cycl. perms. denotes two
remaining terms with cyclic permutations of the ratios,
û ↦ v̂ ↦ ŵ ↦ û. After this is substituted into Eq. (4) and
the momentum space integrals carried out, the limit ϵ → 0
should be taken.
The appearance of the double zero in Eq. (22) reflects the

fact that the only Feynman diagram contributing to this
correlator has the topology of a box. If instead we consider
the 4-point function of ∶ϕ4∶, the contributing Feynman
diagram topologies are as presented in Fig. 3. Up to an
overall symmetry factor, the regulated f̂ reads

f̂ðû; v̂Þ ∼
�
c22

�
v̂
û

� 1
12
Δϕ4 þ ϵ̃2c42

�
û
v̂

�1
6
Δϕ4−

1
2
ϵ

þ ϵ̃2c23

�
v̂4

û

� 1
12
Δϕ4−

1
4
ϵ
�
þ 2 cycl: perms:; ð23Þ

where Δϕ4 ¼ 2ðd − 2Þ. The constants cn are defined
recursively through

cnþ1 ¼ cn
ΓðΔϕÞΓðnΔϕÞΓð1 − nΔϕÞ

ð4πÞd=2Γ½ðnþ 1ÞΔϕ�Γ½1 − ðn − 1ÞΔϕ�
ð24Þ

with c1 ¼ 1 and Δϕ ¼ d=2 − 1. These coefficients arise
from the evaluation of effective propagators. Denoting the
standard massless propagator as D1ðpÞ ¼ 1=p2, the effec-
tive propagator DnðpÞ with n lines in Fig. 3 is

DnðpÞ ¼
cn

p2−2ðn−1ÞΔϕ
¼

Z
ddq
ð2πÞd

Dn−1ðqÞ
jp − qj2 : ð25Þ

Finally, the disconnected part of any correlator can also
be represented by the function f̂. As an example, consider a
generalized free field O of dimension ΔO, for which the
position-space 4-point function has
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fðu; vÞ ∼
�
v
u

�1
3
ΔO þ 2 cycl: perms: ð26Þ

The momentum-space expression is then proportional to
p2ΔO−d
1 p2ΔO−d

3 δðp1 þ p2Þδðp3 þ p4Þ plus permutations, and
can be represented by a regulated f̂ with quadruple zero,

f̂ðû; v̂Þ ¼ ϵ̃4
��

v̂
û

�1
3
ΔO−ϵ þ 2 cycl: perms:

�
: ð27Þ

Holographic CFTs.—Holographic 4-point functions are
obtained by evaluating Witten diagrams in anti–de Sitter
space. These yield compact scalar integral representations
for the momentum-space 4-point functions. Such expres-
sions must again be special cases of the general solution (4)
for some appropriate f̂. This function can be found in
several ways as we now discuss. Since exchange Witten
diagrams can be reduced to a sum of contact diagrams
[57,58], we focus here on the latter deferring a complete
discussion to Ref. [59]. In the simplest case of a quartic
bulk interaction without derivatives, we find

Φ ¼ ⟪OΔ1
ðp1ÞOΔ2

ðp2ÞOΔ3
ðp3ÞOΔ4

ðp4Þ⟫

¼ cW

Z
∞

0

dzzd−1
Y4
j¼1

p
Δj−d=2
j KΔj−d=2ðpjzÞ; ð28Þ

where cW ¼ 22dþ4−Δt=
Q

4
j¼1 ΓðΔj − d=2Þ and the four

modified Bessel-K functions represent bulk-boundary
propagators.
This integral can now be mapped to a tetrahedral

topology via the star-mesh transformation from electrical
circuit theory. Schwinger parametrizing the Bessel func-
tions in Eq. (28) and evaluating the integral, we find

Φ ¼ c0W
Y4
j¼1

Z
∞

0

dZjZ
Δj−d=2−1
j Zðd−ΔtÞ=2

t e−p
2
j =2Zj ; ð29Þ

for c0W ¼ 2ðΔt−dÞ=2−5Γ½1
2
ðΔt − dÞ�cW and Zt ¼

P
4
j¼1 Zj.

The exponent describes the power dissipated in a network
of four impedances Zj arranged in a star configuration.
Such a network is equivalent, however, to a tetrahedral
network where the impedance connecting the vertices ði; jÞ
is zij ¼ ZiZj=Zt (see Fig. 4). Since all products of the
impedances on opposite edges are equal, z2 ¼ z12z34 ¼
z13z24 ¼ z14z23, we can reparametrize the tetrahedron in

terms of z and the three variables si ¼ zi4 for i ¼ 1, 2, 3.
With this change of variables, the contact diagram (28) can
be mapped to the form (4), with

f̂ðû; v̂Þ ¼ 16c0Wð2πÞ3d=2
�
û
v̂

�
−Δt=12þd=2

×
Z

∞

0

dzz−Δt=2þ3d−1Kδ13−δ24ðzÞ

× Kδ23−δ14ðz
ffiffiffî
u

p
ÞKδ12−δ34ðz=

ffiffiffî
v

p
Þ: ð30Þ

This can be directly verified by Schwinger parametrizing
the three Bessel functions in terms of the si then performing
the Gaussian integrations over the momenta qi in Eq. (4).
(For full details, see Ref. [59]). Remarkably, this f̂ features
precisely the same integral (the “triple-K”) that describes
the momentum-space 3-point function [36].
An alternative derivation of Eq. (30) starts from the

position-space Mellin representation for the contact Witten
diagram [53]. Applying Eq. (13), one immediately obtains
a spectral representation of the form (18) with

ρðα; βÞ ¼ c0W2
−Δt=2þ3dð2πÞ3d=2

Y
i<j

ΓðγijÞ ð31Þ

and the γij defined in Eq. (17). The equivalence of this
result with Eq. (30) is seen by writing the latter as a double
inverse Mellin transform. The poles of this spectral
function now give residues of Wα;β for which the propa-
gators in Eq. (16) have powers γij ¼ −n. The ensuing
reduction to 3-point functions shown in Fig. 2(c) then

FIG. 3. Three distinct topologies of Feynman diagrams contributing to the connected part of h∶ϕ4∶∶ϕ4∶∶ϕ4∶∶ϕ4∶i.

FIG. 4. Equivalent electrical circuits where the impedances
are related by zij ¼ ZiZj=Zt. Setting zi4 ¼ si for i ¼ 1, 2, 3
and ðz12; z23; z31Þ ¼ ðz2=s3; z2=s1; z2=s2Þ gives a mapping of
Schwinger parameters converting the contact Witten diagram
(29) into the form (4) with f̂ðû; v̂Þ given in Eq. (30).
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accounts for the appearance of the triple-K integral in
Eq. (30). It would be interesting to understand if this
simplification of residues is a general feature of holo-
graphic 4-point functions.
n-point function.—Generalizing our discussion above,

the conformal n-point function takes the form [59]

hO1ðp1Þ…OnðpnÞi

¼
Y

1≤i<j≤n

Z
ddqij
ð2πÞd

f̂ðfûgÞ
q
2δijþd
ij

Yn
k¼1

ð2πÞdδ
�
pk −

Xn
l¼1

qkl

�
;

ð32Þ

where
P

1≤i<j≤n 2δij ¼ −Δt and f̂ is an arbitrary function
of nðn − 3Þ=2 “conformal ratios” which we denote collec-
tively as fûg ¼ q2ijq

2
kl=q

2
ikq

2
jl. The tetrahedron thus general-

izes to an (n − 1) simplex where qij is the momentum
running from vertex i to j. We then have nðn − 1Þ=2
integrals and n − 1 delta functions (setting one aside for
overall momentum conservation), leaving ðn−1Þðn−2Þ=2
integrals to perform. If n ¼ 4, integrating out the delta
functions and using qa ¼ ϵabcqbc, where a, b, c ¼ 1, 2, 3
and ϵabc is the Levi-Civita symbol, we recover Eq. (4).
Conclusions.—We have presented a general momentum-

space representation for the scalar n-point function of any
CFT. This features an arbitrary function of nðn − 3Þ=2
variables which play the role of momentum-space con-
formal ratios, and is a solution of the conformal Ward
identities. It would be interesting to generalize this to
tensorial correlators.
Following the success of the conformal bootstrap pro-

gram in position space [60,61], it may prove useful to
develop a version in momentum space, see Refs. [29–33].
This requires understanding the expansion of the 4-point
function in conformal partial waves [29,62–65]. One then
seeks to impose consistency with the operator product
expansion (OPE). To correctly implement the OPE in
momentum space requires a careful treatment of the
short-distance singularities [66]. To understand these better,
and for practical calculational purposes, it would be useful
to find a compact scalar parametric representation of the
general solutions (4) and (32). For 3-point functions this is
provided by the triple-K integral, while for holographic n-
point functions we have Witten diagrams. This suggests the
existence of a similarly compact scalar representation for
the general CFT n-point function. We hope to report on
these questions in the near future.
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