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We construct a class of 2þ 1 dimensional relativistic quantum field theories which exhibit the fractional
quantum Hall effect in the infrared, both in the continuum and on the lattice. The UV completion consists of
a perturbative Uð1Þ ×Uð1Þ gauge theory with integer-charged fields, while the low energy spectrum
consists of nontrivial topological phases supporting fractional currents, bulk anyonic excitations, and exotic
phenomena such as a fractional quantum spin Hall effect. We show explicitly how fractionally charged
chiral edge states emerge in the IR.
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Introduction.—Topological materials have been dis-
cussed in the context of lattice quantum field theories since
the early 1990s. In particular, the theory of domain wall
fermions (DWF) [1]—designed to optimally realize chiral
symmetry on a lattice within the constraints of the Nielsen-
Ninomiya theorem [2]—is an example of a topological
insulator, a gapped symmetry protected topological phase of
matter [3]. In the DWF theory, Chern-Simons (CS) currents
in the gapped bulk play the role of quantized Hall currents
[4], while the chiral fermions bound to the surfaces [5] are
equivalent to the edge states found in the integer quantum
Hall system, albeit generalized to non-Abelian gauge
theories. A field theoretic generalization of the TKNN
calculation [6] was given in Ref. [7], where it was shown
that the quantization of the CS operator coefficient (respon-
sible for the quantization of the bulk current) had a
topological origin, and that transitions between these topo-
logical phases were responsible for abrupt changes seen in
the spectrum of chiral edge states [8]. In particular, the
Feynman diagram calculation of the CS coefficient in dþ 1
spacetime dimensions was shown to compute the winding
number of the map from momentum space to the sphere
Sdþ1, explaining its quantization and insensitivity to param-
eters in the Lagrangian. Furthermore, the constructions of
anomaly-free representations for chiral edge states given in
Refs. [1,9] (for the purpose of regulating chiral gauge
theories) have vanishing gauged but nonzero quantized
chiral flavor currents in the bulk, and are realizations of
the quantum spin Hall effect. (The simplest anomaly-free
theory consists of a Dirac fermion at each edge, as in the

examples of the SQHE seen experimentally [10,11],
although less trivial examples of anomaly cancellation have
been studied numerically [9].) In yet another correspon-
dence between relativistic and condensedmatter topological
materials, Majorana fermion edge states were introduced in
the relativistic context [12] and used for the numerical
simulation of gauginos in supersymmetric gauge theory
[13], analogous to theMajorana modes of condensed matter
systems [14].
Despite this long list of topological phases found in

condensed matter that also play a role in relativistic
quantum field theory, notably missing to date is the
fractional quantum Hall effect (FQHE). In this Letter we
provide an example of such a theory, by which we mean a
perturbative, UV-complete, 2þ 1 dimensional, Lorentz-
invariant gauge theory of integer-charged matter fields,
where the low energy theory at zero chemical potential is
characterized by topological phases with fractionally
charged chiral edge modes and a fractional coefficient
for the Chern-Simons operator in the bulk. Our construc-
tion is motivated by existing effective field theory descrip-
tions of IR phenomena in condensed matter systems (see,
for example, Refs. [15,16]); however, a perturbative UV
completion is typically impossible in most physical con-
densed matter systems due to the high degeneracy of states,
and one must simply guess at the appropriate low energy
effective theory. In contrast, our relativistic construction
allows one to compute in detail how the collective IR
behavior arises from short distance physics. The framework
provides examples of other exotic phenomena, such as a
fractional quantum spin Hall effect, and we are able to
demonstrate explicitly how the spectrum of fractionally
charged chiral edge modes emerges.
Our theory is a Uð1Þ ×Uð1Þ gauge theory in 2þ 1

dimensions, with gauge bosons Aα (the “photon”) and Zα,
and three types of fermions ψ , χ, and ω with charge
assignments as shown in Table I. For simplicity we take all
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fermion masses to have the same magnitude, jmij ¼ M,
where M is some positive mass scale. Each fermion is
assigned an integer flavor number nψ , nχ , and nω respec-
tively, where jnij denotes the number of degenerate flavors
of fermion type i, while the sign of ni equals the sign of the
fermion mass, ni=jnij≡mi=jmij. The Lagrangian then
consists of the usual Dirac terms for the fermions with
covariant derivative Dα ¼ ∂α þ iqAAα þ iqZZα, as well as
Maxwell terms for the gauge bosons, −ð1=4e2ÞFαβFαβ,
−ð1=4g2ÞZαβZαβ, where Zαβ is the field strength for the Zα

gauge boson and g is its coupling constant. The qA and qZ
charges we choose for the fermions are given in Table I.
The topological phase structure of the theory depends on

momentum space being compact, and so we consider two
different regularizations in this Letter with quite different
topological phases: we first examine in detail Pauli-Villars
field regularization in the continuum, and then later briefly
consider a lattice regularization with Wilson fermions,
adapting results from previous papers. The former com-
pactifies momentum space to a sphere while the latter to a
torus (the Brillouin zone). For the former we take one Pauli-
Villars field of mass Λ for each fermion in the theory with
mass M, with the same charge assignment but opposite
statistics and opposite sign mass, Λ=jΛj ¼ −M=jMj. The
opposite statistics is what regulates the UV behavior of
fermion loops, while having a relative sign between the
mass of each fermion and its regulator allows the theory to
be in a nontrivial topological phase, as we will discuss
below. With our normalization of the gauge fields, and
with ℏ ¼ c ¼ 1, the theory has four different mass scales:
Λ, M, g2, and e2, which we choose to obey the following
inequalities,

jΛj ≫ jMj ≫ g2 ≫ e2; ð1Þ
where the hierarchies are considered to be much bigger
than the numbers of flavors, jnψ ;χ;ωj.
We now construct the effective low energy theory for this

system. Given our hierarchy of scales in Eq. (1), we first
integrate out the massive fermions and their regulator
fields. The resultant theory is gapped, with the exception
of massless chiral edge states if the system has a boundary.
The next heaviest state is the Z boson, and so we next
integrate out that field, yielding the effective theory for just
the photon and the edge states.
First we consider the theory without a boundary, post-

poning the discussion of edge states. The most relevant

gauge invariant operators that can be generated on inte-
grating out the massive fermions are CS operators involv-
ing the two gauge fields. In particular we obtain the
following contribution to the effective Lagrangian (Our
metric convention is ηαβ ¼ diagf1;−1;−1g with ϵ012 ¼ 1

and Dirac matrices satisfying fγα; γβg ¼ 2ηαβ.),

LCS ¼
ϵαβγ

4π
½nψAα∂βAγ þ nχZα∂βZγ

þ nωðAα þ ZαÞ∂βðAγ þ ZγÞ� þ � � � ; ð2Þ

where the ellipses refers to higher derivative operators,
including the Maxwell terms. These P and T violating CS
operators are proportional to the signs of the fermion and
Pauli-Villars masses, which are odd under P and T; the
opposite sign mass for the Pauli-Villars field, in conjunc-
tion with its opposite statistics, ensures that its contribution
adds to rather than cancel with the fermion contribution for
each fermion. At this point it should be no surprise then that
the theory will exhibit the FQHE, since Eq. (2) is an
example of the effective description for the FQHE in
condensed matter systems [17].
With the Chern-Simons operators being linear in deriv-

atives and the Maxwell terms quadratic, the gauge boson
propagators develop gauge-invariant poles at nonzero mass
[18]. With g2 ≫ e2, the Z boson is heaviest with mass

MZ ¼ g2ðnχ þ nωÞ=ð2πÞ þOðe2=g2Þ; ð3Þ

and so we integrate it out of the theory to create the
effective theory for the photon. Since we are looking for a
theory with momenta k satisfying MZ ≫ k > Mγ, we can
take g → ∞ at this point in our calculations, ignoring the
irrelevant Maxwell term for the Z. Since the theory is gauge
invariant, we need to introduce a gauge fixing term,
however, ð1=2ξÞðZα∂α∂βZβÞ. The Z-dependent part of
the Lagrangian may then be written as

LZ ¼ 1

2

��
Z −

nω
2π

AΔQ−1
�
Q
�
Z −

nω
2π

Q−1ΔA
�

−
�
nω
2π

�
2

AΔQ−1ΔA
�
; ð4Þ

with definitions

Q ¼ −
ðnχ þ nωÞ

2π
Δþ Ξ

ξ
;

Δαβ ¼ ϵαβγ∂γ; Ξαβ ¼ ∂α∂β: ð5Þ

The propagator is then computed to be

Q−1 ¼ 2π

ðnχ þ nωÞ
Δ
∂2

þ ξΞ
ð∂2Þ2 ; ð6Þ

TABLE I. Dirac fermions labeled by Uð1ÞA × Uð1ÞZ charge
assignments fqA; qZg.

nflavor qA qZ

ψ nψ 1 0
χ nχ 0 1
ω nω 1 1
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from which follows ΔQ−1Δ¼−2πΔ=ðnχþnωÞ. Therefore,
after integrating out the Z, we are left with the low energy
effective theory for the photon,

LEFT ¼ 1

4e2
FαβFαβ þ ν

ϵαβγ

4π
Aα∂βAγ þ � � � ;

ν ¼
�
nψ þ nχnω

nχ þ nω

�
; ð7Þ

where the ellipses represent irrelevant higher derivative
operators. The Hall current for this system with conven-
tional normalization of the gauge field is then given by

Jα ¼ ν
e2

4π
ϵαβγFβγ ð8Þ

implying a fractional Hall conductivity σxy ¼ νe2=h. In
general our expression for ν takes noninteger values, as
displayed for several examples in Table II. While values of
ν from the Laughlin and Jain series can be obtained by
suitable choice of flavor numbers, these series play no
special role in the relativistic theory.
Fractionally charged chiral surface modes and bulk

excitations.—When the system has a boundary, gauge
invariance requires that there must be a boundary theory
whose Uð1Þ anomaly cancels the divergence of the bulk
Chern-Simons current in Eq. (8), the Callan-Harvey
effect [4]. Indeed, if one turns off the gauge interactions,
one can show that a chiral edge state exists for each flavor
of fermion with chirality proportional to the sign of the bulk
fermion mass [5]; however, from their charge assignments
in Table I it appears that they can only carry integer charge
under theUð1ÞA gauge group and therefore cannot have the
correct chiral anomaly to match fractional CS current in the
bulk. To resolve this puzzle we consider the theory on
the half-space x2 ≥ 0 with boundary condition for both the
fermions and Pauli-Villars fields of type i

Pþ
i Ψijx2¼0¼P−

i Ψijx2¼∞¼ 0; P�
i ¼ ½1� ϵðniÞΓ�

2
; ð9Þ

where ni is the flavor number of that fermion (recall that for
each fermion the sign of n reflects the underlying sign
chosen for its mass), and Γ ¼ iγ2 is the Hermitian chiral
matrix with eigenvalues �1. Massless chiral edge states
correspond to solutions to ðiγ2∂2 −miÞΨi ¼ 0 consistent
with the boundary condition Eq. (9). Such states exist for
each fermion with chirality given by −ϵðniÞ. The Pauli-
Villars fields of type i have opposite sign mass (but the
same ni) and the boundary condition forbids a zero mode
solution for them.
To compute the effective theory for the half-space we

must include the massless edge modes, adding to the UV
action

R
d3xðAμJ

μ
A þ ZμJ

μ
ZÞ, where the currents have the

form dictated by the charges qA;Z given in Table I

J μ
A ¼ ðJ μ

ψ þ J μ
ωÞ; J μ

Z ¼ ðJ μ
χ þ J μ

ωÞ;
J μ

i ¼ δðx2ÞΨ̄iγ
μP−

i Ψi; i ¼ ψ ; χ;ω; ð10Þ

where μ ¼ f0; 1g designates the d ¼ 1þ 1 coordinates on
the mass defect, and the Ψi only include fermions, not
Pauli-Villars fields. Integrating out the Z boson therefore
induces couplings between J μ

Z and the photon, and we
must add to the effective theory in Eq. (7) the edge mode
interactions

Lzm
EFT ¼ nω

4π
½AαðΔQ−1ÞαβJ β

Z þ J α
ZðQ−1ΔÞαβAβ�

þ AμJ
μ
A; : ð11Þ

In the above equation indices α, β take values in 2þ 1
dimensions, but the bulk component of the zero mode
current vanishes, J 2

Z ¼ 0. If we combine the contributions
to the photon current from the first two terms above with
the bulk contribution from the last term in Eq. (4), we find
that the photon current induced by integrating out the Z is
given by

Jαinduced ¼
nω
2π

�
ΔQ−1

�
J Z −

nω
2π

ΔA
��

α

: ð12Þ

The quantity in parentheses is the conserved current
identified by Callan and Harvey [4], the divergence of
the bulk current at the boundary being canceled by the
anomaly of the edge state current. (The cancellation
requires one use the covariant anomaly for the edge states
instead of the consistent anomaly, which is half as large; the
discrepancy is resolved by the generation of additional
gauge field terms at the surface [19].) The operator acting
on this current is

ðΔQ−1Þαβ ¼ −
2π

nχ þ nω

�
ηαβ −

∂α∂β

∂2

�
; ð13Þ

which is recognized as being proportional to the projection
operator onto physical states. Without altering the physics

TABLE II. Properties of the low energy spectrum for various
values of the UV flavor numbers fnψ ; nχ ; nωg. The quantity ν
from Eq. (7) is the analogue of the filling fraction in condensed
matter systems while fq0ψ ; q0χ ; q0ωg are the charges of the massless
chiral edge states; q0ϕ and αϕ are the charge and statistics of
bulk excitations arising from a boson field ϕ in the UV with
Uð1Þ × Uð1Þ charges qZ ¼ 1, qA ¼ 0.

fnψ ; nχ ; nωg ν fq0ψ ; q0χ ; q0ωg q0ϕ αϕ

f1;−1;−2g 1=3 f1;−2=3; 1=3g −2=3 4=3
f0; 1; 1g 1=2 f1;−1=2; 1=2g −1=2 1=2
f0; 1; 2g 2=3 f1;−2=3; 1=3g −2=3 2=3
f2; 1; 1g 5=2 f1;−1=2; 1=2g −1=2 1=10
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we can make the interaction local by adding a similar term
involving the projection operator onto unphysical longi-
tudinal states, since the added interaction is proportional to
the divergence of the conserved current, allowing us to
replace

ðΔQ−1Þαβ → −
2π

nχ þ nω
ηαβ: ð14Þ

Adding the resultant induced current to the direct zero
mode contribution J μ

A in Eq. (11) yields the total inter-
action of the photon with the edge states

J μ
A;EFT ¼ ðq0ψJ μ

ψ þ q0χJ
μ
χ þ q0ωJ

μ
ωÞ ð15Þ

with

q0ψ ¼ 1; q0χ ¼−
nω

nχ þnω
; q0ω¼ 1−

nω
nχ þnω

; ð16Þ

taking into account the ðnω=4πÞ prefactor in Eq. (11). We
see therefore that in the low energy theory, the chiral χ and
ω edge states carry fractional charge. For example, our
ν ¼ 1=3 example from Table II yields the fractional charges
q0χ ¼ −2=3 and q0ω ¼ 1=3 for the chiral χ and ω edge states,
respectively.
For our effective theory to be gauge invariant, the

d ¼ 1þ 1 anomaly at the edge of the sample with these
fractionally charged edge modes must correctly cancel the
boundary divergence of the Hall current Eq. (8). Indeed this
is the case since

X
i¼ψ ;χ;ω

niðq0iÞ2 ¼
�
nψ þ nχnω

nχ þ nω

�
¼ ν: ð17Þ

Bulk excitations in the IR can be studied by adding
additional light fields to the theory. Consider, for example,
a bosonic field ϕ of mass mϕ with mϕ < MZ and charges
qA ¼ 0, qZ ¼ 1. After integrating out the Z field, ϕ couples
to the photon with induced fractional charge given by

qϕ0 ¼ q0χ ¼ −
nω

nχ þ nω
: ð18Þ

A magnetic flux 2πq0ϕ=ν attaches to the particle in the IR,
and so in the usual way the resulting Aharanov-Bohm
phase modifies the boson statistics so that the two-boson
state satisfies jψ1ψ2i ¼ eiαϕ jψ2ψ1i with

αϕ ¼ ðq0ϕÞ2
ν

¼ n2ω
ðnχ þ nωÞðnχnψ þ nωnψ þ nχnωÞ

: ð19Þ

Examples of the fractional coupling and statistics for these
excitations are in Table II. Different initial qA;Z charges will

lead to bulk excitations with different behavior in the IR
theory.
Fractional quantum spin Hall effect.—The quantum spin

Hall effect (QSHE) occurs when the current in the bulk
transports global quantum numbers but not gauged charges,
in contrast with the classical Hall current. In the language of
quantum field theory, this means that the edge states form
an anomaly-free representation of the gauge group, while
various flavor symmetries can have gauge anomalies. This
effect was analyzed in Ref. [1], where it was suggested that
by physically separating topologically protected edge states
in gauge anomaly free representations from their conjugate
counterparts at the opposite edge, one could turn the
problem of finding a nonperturbative regulator for chiral
gauge theories into finding the appropriate phase of a lattice
theory with spatially dependent interactions. (This idea is
still being pursued in various forms [20–25].). By con-
struction, such materials only have CS (Hall) currents
which carry flavor quantum numbers in the bulk. The
simplest example is a material with a massless Dirac
fermion at each edge, such as seen in condensed matter
systems [26], but less trivial examples of anomaly cancel-
lation have been investigated numerically, such as the 3-4-5
model [9] which has a chiral representation on the
boundary.
It is evident that a fractional quantum spin Hall effect is

possible, where the Hall currents only transport fractional
flavor charges. In order to not have transport of electric
charge we must have the coefficient ν of the Hall current in
Eq. (8) vanish, namely,

ν ¼
�
nψ þ nχnω

nχ þ nω

�
¼ 0: ð20Þ

We can then consider the transport of any linear combi-
nation of the many Uð1Þ flavor currents in the model,
normalized so that the fermions in the UV theory carry
integer charge, and compute its Hall current. As a specific
example, consider the flavor current jα of a single one of
the jnχ j χ fermions, e.g., χ1. We can introduce a source fα in
the UV theory coupled to the current χ̄1γμχ1 and compute
the effective theory with all fields integrated out except for
fα, Aα and the chiral edge states. The flavor current in the
IR can be obtained by differentiating this action with
respect to fα, then setting fα ¼ 0. A nontrivial result for
the Hall conductivity of our flavor current will be obtained
when the effective theory has an induced Chern-Simons
coupling between fα and Aα. This is the case with our
particular example, and we find that the Hall conductivity
for this flavor is

σðχ1Þxy ¼ −2
nω

nω þ nχ

e2

h
¼ 2

nψ
nχ

e2

h
: ð21Þ

For example, if we set nψ ¼ 2, nχ ¼ −6 and nω ¼ −3 we
solve the anomaly cancellation Eq. (20, while the Hall
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conductivity for the χ1 number given by Eq. (21) is

σðχ1Þxy ¼ − 2
3
ðe2=hÞ, and this fractional Hall conductivity

will be accompanied by massless edge modes carrying a
fractional χ1-flavor number as well, to ensure flavor current
conservation. (FQSHE has been previously discussed for
theories possessing time-reversal symmetry in Ref. [27].
None of the models considered here are T invariant, which
would require all fermions to come in � sign mass pairs.)
Topological phases.—Ref. [7] explained the quantiza-

tion of the CS coefficient as being topological in origin,
equal to the winding number of the map provided by the
fermion dispersion relation from momentum space to the
Dirac sphere. This winding number only has meaning in
the IR and depends on the fermions being massive (gapped)
in the bulk. Topological phase transitions can occur at
points or surfaces in parameter space where the theory
becomes gapless. It was the observation of discontinuous
jumps in the spectrum of chiral edge states in lattice
quantum field theory at particular parameter values that
motivated that work.
In the example we have analyzed here, each fermion of

mass M and its accompanying Pauli-Villars regulator of
mass Λ combined contribute a factor to the coefficient of
the CS operator proportional to ðM=jMj − Λ=jΛjÞ ¼ �2,
given our choice that Λ=jΛj ¼ −M=jMj. Evidently if we
had chosen the Pauli-Villars mass to have the same sign as
the fermion, the two contributions would cancel, the
magnitude of the fractional Hall current would change,
and the charges of the chiral edge modes would be
different. Therefore a topological phase transition can be
seen by varying the fermion mass continuously from
M → −M, where the transition occurs at M ¼ 0 and the
CS operator coefficient changes by �2. However, our
boundary condition (9) would also change discontinuously
which makes this example difficult to analyze. So instead
of a half space, consider the full space, but where the
fermion mass M is positive for one sign of x2 and negative
for the other, so that the chiral edge modes live on the
“domain wall” at x2 ¼ 0. The Pauli-Villars mass is taken to
be constant everywhere so that there are no massless edge
states with negative norm. Now we see that the sum of
fermion and Pauli-Villars contributions add on one side of
the circle and cancel on the other, so that the transformation
M → −M has the effect of a parity transformation, moving
the nonzero CS current from one side of x2 ¼ 0 to the other
and flipping the chirality of the edge modes, but not
rendering the topology trivial.
Instead of Pauli-Villars regularization we could employ a

lattice regularization with Wilson fermions. In this case one
finds a much richer topological phase diagram, where one
can vary the ratio of the fermion mass to Wilson coefficient
M=r for each fermion (The Wilson parameter r refers to
the coefficient of the ψ̄D2ψ operator, where D2 is the
gauge covariant lattice Laplacian.), toggling the number
and chirality of edge states for each flavor through the

Pascal triangle numbers 0,1,2,1,0 with alternating chirality;
see, for example, Refs. [7,28] for a discussion and phase
diagram. Thus, for a single Wilson fermion field with
qA ¼ 0 and qZ ¼ 1 we get a contribution to nχ equal to one
of the values f0;�1;�3g depending on the choice of M=r
for that field. Since such choices can be made individually
for each fermion field in the UV, we see that the lattice
theory will have a large number of possible topological
phases for any particular set of fermions.
Discussion.—By adopting existing effective field theory

descriptions of the FQHE in condensed matter systems we
have explicitly constructed relativistic UV completions that
exhibit the same phenomenon of charge fractionalization.
These theories have only integer charged fermions and
gauge fields in the UV, and they exhibit a topological phase
structure which (as should be expected) is dependent on the
specifics of the UV regularization used. Such theories are
perturbative and the emergence of topological IR physics,
such as fractionalization of the charges of the chiral edge
fermions, can be explicitly computed. Similarly it is easy to
construct UV theories that exhibit a fractional spin quantum
Hall effect. There are many ways one can extend this
approach, such as by extending the gauge group to include
more Abelian or non-Abelian gauge fields—for example,
starting with the effective field theories in Ref. [29]—and to
incorporate spontaneous symmetry breaking or other
dimensions. (There have been several recent papers inves-
tigating the topological phase diagram of U(1) gauge
theories on the lattice in 1þ 1 dimensions [30–33].) It is
hoped that in pursuing this program it may be possible to
further our understanding of topological phenomena and
how they can arise, although it is not clear whether this could
be relevant for relativistic theories in 3þ 1 dimensions.
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