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The non-Abelian topological phase with Fibonacci anyons minimally supports universal quantum
computation. In order to investigate the possible phase transitions out of the Fibonacci topological phase,
we propose a generic quantum-net wave function with two tuning parameters dual with each other, and the
norm of the wave function can be exactly mapped into a partition function of the two-coupled ϕ2-state Potts

models, where ϕ ¼ ð ffiffiffi
5

p þ 1Þ=2 is the golden ratio. By developing the tensor network representation of this
wave function on a square lattice, we can accurately calculate the full phase diagram with the numerical
methods of tensor networks. More importantly, it is found that the non-Abelian Fibonacci topological phase
is enclosed by three distinct nontopological phases and their dual phases of a single ϕ2-state Potts model:
the gapped dilute net phase, critical dense net phase, and spontaneous translation symmetry breaking
gapped phase. We also determine the critical properties of the phase transitions among the Fibonacci
topological phase and those nontopological phases.
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Introduction.—In recent years, theoretical and experi-
mental search for topological quantum phases of matter
with anyonic excitations have attracted considerable atten-
tion, because non-Abelian quasiparticles are a necessary
ingredient for topological quantum computation [1–5].
Since the non-Abelian topological phases are characterized
by fractionalized degrees of freedom [3,6], the Landau-
Ginzburg-Wilson theory cannot be used to characterize
these exotic phases, and their phase transition to other
nontopological phases is an important open problem.
One remarkable feature of topological phases is that the

ground-state wave function encodes many of the quasipar-
ticle properties, which was exploited as far back as
Laughlin’s pioneering work on the fractional quantum
Hall effect [7]. Many properties of the topological phases
can also be deduced by mapping the wave function to a
statistical mechanics model. In this Letter, we will develop
a tensor network approach by constructing a generic
topological wave function with tuning parameters, which
directly encodes the topological properties in the virtual
symmetries of the local tensor. By studying the correspond-
ing partition function, we can detect possible topological
phase transitions and identify the associated anyon-
condensation mechanism.
The Fibonacci anyon phase is the simplest one support-

ing universal quantum computation. The Fibonacci anyon τ
obeys the non-Abelian fusion rule: τ ⊗ τ ¼ 1 ⊕ τ, where 1
is the trivial particle, and one Fibonacci anyon carries a
noninteger quantum dimension ϕ ¼ ð ffiffiffi

5
p þ 1Þ=2. A proto-

type lattice model realizing the Fibonacci anyons is the

Levin-Wen string-net model [8] with an additional two
types of anyons: τ̄ with the opposite chirality to τ and a
bosonic composite particle b ¼ τ ⊗ τ̄. This string-net
model just represents the fixed point of the doubled
Fibonacci (DF) topological phase with zero correlation
length. To consider the topological phase transitions out of
the DF topological phase, one has to drive the string-net
model away from its fixed point by introducing a compet-
ing interaction or a string tension [9–13]. However, due to
the lack of quantum self-duality, a generic phase diagram of
the DF topological phase has not been obtained.
It was noticed that a quantum-net model is suggested to

describe the DF topological order with a finite correlation
length on a square lattice [14,15]. The most important
feature is the presence of quantum self-duality. In this
Letter, we propose a generic DF quantum-net wave
function with two dual string tensions [16], and its norm
can be mapped into a partition function of the two-coupled
ϕ2-state Potts models, whose Boltzmann weights can be
negative. Such a singular behavior stems from the quantum
many-body effect. In order to study the quantum topologi-
cal phase transitions numerically, we derive the triple-line
tensor network state (TNS) representation of this generic
wave function. Then the global phase diagram is fully
established using the corner transfer matrix (CTM) method
[17–20] and variational uniform matrix product state
(VUMPS) method [20–22]. As shown in Fig. 1, the
non-Abelian DF phase is present only in the two-coupled
Potts models and enclosed by three distinct nontopological
phases and their dual phases: the gapped dilute net phase,

PHYSICAL REVIEW LETTERS 124, 130603 (2020)

0031-9007=20=124(13)=130603(6) 130603-1 © 2020 American Physical Society

https://orcid.org/0000-0002-7723-4855
https://orcid.org/0000-0002-1243-344X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.130603&domain=pdf&date_stamp=2020-04-03
https://doi.org/10.1103/PhysRevLett.124.130603
https://doi.org/10.1103/PhysRevLett.124.130603
https://doi.org/10.1103/PhysRevLett.124.130603
https://doi.org/10.1103/PhysRevLett.124.130603


critical dense net phase, and spontaneous symmetry break-
ing (SSB) gapped phase.
Generic quantum-net wave function.—The quantum-net

wave function involves nets and chromatic polynomials
[15]. An edge of the lattice is either empty or occupied by a
τ string, yielding two mutually orthogonal quantum states
j1i and jτi, see Fig. 2(a). A τ string consists of the jτi states
on the connected edges, and a net N is formed by the
closed τ strings, which are allowed to branch and cross, as
shown in Fig. 2(b). Since the net N divides the two-
dimensional manifold into different regions, the chromatic
polynomial χN̂ ðQÞ with Q ∈ Nþ counts the ways of
coloring the net N using Q different colors (nets N and

N̂ are dual each other), such that the neighboring regions
sharing a boundary are colored differently. Since χN̂ ðQÞ is
a polynomial of Q, it can be generalized to Q ∈ R.
On a square lattice, the DF quantum-net wave function

[14,15] is given by the superposition of nets N ,

jΨi ¼
X
N

ϕ−LN =2χN̂ ðϕ2ÞjN i; ð1Þ

where LN is the total length of the τ strings in the net N
and ϕ−LN =2 is viewed as a string tension. The end of the τ
string will carry a Fibonacci anyon with fractionalized
quantum dimension ϕ. To show the quantum self-duality,
the wave function jΨi has to be written on the dual lattice in
terms of the orthogonal quantum states j1̂i and jτ̂i, which
are related to the local states j1i and jτi via the trans-
formation [14]

U ¼
� h1j1̂i hτj1̂i
h1jτ̂i hτjτ̂i

�
¼ 1

ϕ

�
1

ffiffiffiffi
ϕ

p
ffiffiffiffi
ϕ

p
−1

�
: ð2Þ

Then the dual quantum-net wave function has the same
form as jΨi.
Inspired by the deformed Z2 Abelian topological state

[23,24], we propose a generic quantum-net wave function

jΨðh; ĥÞi ¼
Y
edges

Pðh; ĥÞjΨi; ð3Þ

where Pðh; ĥÞ ¼ ð1þ hσz þ ĥσ̂zÞ is the deformation
matrix acting on all edges, σz is the diagonal Pauli matrix
in the j1i and jτi basis, and σ̂z ¼ UσzU−1 is the diagonal
Pauli matrix in the j1̂i and jτ̂i basis. h and ĥ describe the
string tensions. The quantum duality transforms jΨðh; ĥÞi
into jΨðĥ; hÞi, and the quantum self-duality is exhibited
when h ¼ ĥ.
It should be emphasized that the generic wave function

still has a local parent Hamiltonian. As it is shown, the
quantum-net jΨi has a frustration-free parent Hamiltonian:
H ¼ P

a Ha is a sum of local positive projectors [15].
Since the deformation matrix P is a local positive definite
operator, the parent Hamiltonian of the generic wave
function is given by Hðh; ĥÞ ¼ P

a P
−1
a HaP−1

a , where Pa
is a product of P in the support of Ha. The possible
quantum critical points of this parent Hamiltonian are
characterized by the so-called conformal quantum critical
points [25,26], where all equal-time correlators of local
operators are described by two-dimensional conformal field
theories (CFTs).
Mapping to two-coupled Potts models.—To extract the

possible quantum phase transitions out of the DF topo-
logical phase, we consider the norm of the generic
quantum-net wave function,

(a) (b)

FIG. 2. (a) Two local orthogonal quantum states j1i and jτi and
their dual local states j1̂i and jτ̂i. (b) The physical degrees of
freedom located at the edges of the square lattice. The full lines
denote the original lattice, while the dashed lines are dual lattice.
N and D are two typical nets.

FIG. 1. The global phase diagram for the generic quantum-net
phase with two dual parameters. The phase diagram is symmetric
about the self-dual line h ¼ ĥ and bounded by the elliptic curve
of the two-decoupled Potts models. The AC dot-dashed line
represents a weak first-order transition and all other solid lines are
continuous transitions. C denotes a tricritical point and D is a
tetracritical point.
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Z ¼
X
N ;N 0

χN̂ ðϕ2ÞχN̂ 0 ðϕ2Þ
Y
edge

Wn;n0 ; ð4Þ

where N and N 0 denote the nets in the bra and ket layers,
and n; n0 ¼ 1 or τ corresponds to the empty or τ string-
occupied edge. The weight matrix W is given by

W ¼ W0

�
1 e−K

e−K e−2K−K
0

�
; ð5Þ

where

e−K ¼ 4ĥ=ϕ2

4ĥ2=ϕ3 þ ð1þ h − ĥ=ϕ3Þ2 ;

e−K
0 ¼ 4ĥ2=ϕ3 þ ð1 − hþ ĥ=ϕ3Þ2

4ĥ2=ϕ2 þ ϕð1þ h − ĥ=ϕ3Þ2 e
2K: ð6Þ

Since the Q-state Potts model is expressed as ZPotts ¼P
N e−βLN χN̂ ðQÞ, e−K can be viewed as the Boltzmann

weight for the ϕ2-state Potts model, while K0 describes the
interlayer coupling. Therefore, instead of the previous
ðϕþ 2Þ-state Potts model [27], the wave function norm
(4) is mapped into the partition function of two-coupled
ϕ2-state Potts models. Such a statistical model is unusual in
the sense that it involves negative Boltzmann weight in the
parameter region (ĥ < 0). Such an anomaly stems from the
quantum many-body effect. However, the appearance of
such negative Boltzmann weights will not spoil the solution
to the partition function.
Numerous exact results can be deduced. When the

coupling of the two ϕ2-state Potts models vanishes, the
deformation matrix Pðh; ĥÞ just projects out the trivial
product states [24], i.e., detPðh; ĥÞ ¼ 0, corresponding to
an elliptic equation h2 − 2hĥ=ϕ3 þ ĥ2 ¼ 1 as the boundary
of the phase diagram (Fig. 1). From this equation, we can
find two self-dual points h ¼ ĥ ¼ �ϕ=2. One is identified
as the ferromagnetic critical point A, separating the gapped
dilute net phase and its dual phase [28], and the other was
considered as an “unphysical” point F in the previous study
[29] due to the presence of negative Boltzmann weights.
However, we will use the TNS methods to show that the
point F is a multicritical point, around which a new phase
with translational symmetry breaking and its dual phase are
found (details in Supplemental Material [30]).
Along the self-dual line h ¼ ĥ, it has been known that

the transfer operators of the two-coupled Potts models are
endowed with SOð4Þ3 Birman-Murakami-Wenzl algebra
and a critical point C ≈ ð0.197; 0.197Þ has been found by
the level-rank duality [31], which is described by the coset
CFT with a central charge c ¼ 27=20. As shown in Fig. 1,
this critical point C divides the self-dual line into two parts:
the DF topological part CF and the first-order phase

transition line AC between the dilute net phase and its
dual phase.
Tensor network representation.—In order to explore the

large parameter space of the global phase diagram, we have
to employ the numerical calculations. Before that, the TNS
representation of the generic quantum-net wave function
should be established. Since the nonlocal chromatic poly-
nomials are involved in thewave function, auxiliary degrees
of freedom on the dual vertices are introduced to express the
wave function in terms of local structures. It is known that
the TNS representation of the Levin-Wen Fibonacci string-
net jΨSNi on the honeycomb lattice has been established
[32,33].When each vertex of a square lattice is split into two
and added a new edge with no physical degrees of freedom,
the square lattice is transformed into the honeycomb lattice.
Taking advantage of the deletion-contraction relation [14]
displayed in Fig. 3(a), we can obtain the corresponding
chromatic polynomial on the square lattice so that the TNS
for the quantum-net can be constructed.
As shown in Figs. 3(b) and 3(c), the local tensor of the

quantum-net on the square lattice is derived by contracting
two triple-line tensors T via

Mijlm
αβγδ ¼

X
k

ϕ−Vijklm=4Tijk
βδαT

lmk
δβγ ;

Vijklm ¼ 3δkτðδiτδjτ þ δlτδmτÞ þ δiτ þ δjτ þ δlτ þ δmτ:

Then the TNS of the quantum-net wave function is
expressed as

jΨi ¼
X

f���ijlm���g
tTr

�
⨂
vertex

Mijlm
αβγδ

�
j � � � ijlm � � �i; ð7Þ

(c)

(a) (b)

FIG. 3. (a) The square lattice is transformed to a honeycomb
lattice. (b) The triple-line local tensor T in the string-net wave
function. (c) Contracting two tensors T yields the tensorM on the
square lattice.
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where “tTr” denotes the tensor contraction over all aux-
iliary indices. Finally, the deformed DF quantum-net wave
function jΨðh; ĥÞi is derived with the modified local tensor
M̃ijlm

αβγδ, which can be obtained by acting the deformation

matrix P on the physical indices of Mijlm
αβγδ.

In the TNS representation, the topologically degenerated
ground state can be characterized with matrix product
operators (MPOs) acting on the auxiliary degrees of free-
dom [34–37]. The quantum-net jΨðh; ĥÞi shares the same
MPOs as those of the Fibonacci string net [11], and the
MPOs are independent of the deformation parameters h and
ĥ. On a torus, the degenerate ground state space is spanned
by four minimal entangled states [38] labeled as j1i, jτi, jτ̄i
and jbi. With the MPO algebra [11,35,36], it can be
checked that our generic wave function jΨðh; ĥÞi ¼
j1i þ jbi. By inserting MPOs winding around the TNS
wave function jΨðh; ĥÞi, other three linear combinations of
the minimal entangled states can be obtained. In the generic
TNSs, the well-defined anyonic excitations can be created
by simply manipulating on the auxiliary degrees of freedom
with MPOs, so one can easily measure the condensation
and confinement of anyons [34,39]. To probe the quantum
phase transitions, it is sufficient to focus on jΨðh; ĥÞi
without MPO insertion. However, if one concerns about the
fates of τ and τ̄ anyons, the TNSs with the MPO insertions
[40] must be taken into consideration. Furthermore, the
MPO symmetry of the local tensor also constrains the
possible CFTs describing conformal critical points [41,42],
and the CFTs must contain a quantum dimension ϕ2.
Global phase diagram.—With the TNS for the deformed

quantum net at hand, those TNS algorithms can be applied.
Integrating the physical variables of the generic DF wave
function yields the partition function in the form of a
double-layer tensor network

Z ¼ tTr

�
⨂
vertex

M

�
¼ TrðTLxÞ; ð8Þ

where M is the local double triplet-line tensor obtained by
contracting the physical indices of M̃ and its conjugate, T is
the column-to-column transfer operator, and Lx is the
number of columns. In order to determine the various
phase boundaries, we need to calculate the correlation
length, whose divergent peaks give rise to the position of
the continuous phase transitions. When the transfer oper-
ator T is hermitian, we employ the VUMPS [20–22] to
extract the correlation length, while for non-Hermitian T in
the lower half-plane of Fig. 1, the CTM [17–20] method
is used.
Along the axis of h, the numerical TNS calculation with

VUMPS algorithm has been performed with large bond
dimensions D ¼ 80, 100, 120. As shown in Fig. 4(a), there
is a phase transition from the DF topological phase to the
dilute net phase around h ≈ 0.1. The peak position of the

correlation length is nearly the same for these three bond
dimensions. The corresponding phase transition is still
described by the CFT with a central charge c ¼ 14=15,
similar to that of the deformed DF string net [11]. As h is
further decreasing, the correlation length first shows a
divergent peak around h ≈ −0.3 and then a hump appears,
which gradually becomes a broad peak with the increasing
bond dimension. After this hump, the system enters into a
gapless dense net phase. The finite entanglement scaling
Fig. 4(c) suggests that the dense net phase is described by
the CFTwith central charge c ¼ 7=5, corresponding to the
squared tricritical Ising university class. Between the DF
topological phase and the dense net phase, we find a narrow
region of the gapped phase with translational symmetry
breaking. In order to clearly see the SSB phase, we display
the correlation length along the cut ĥ ¼ −0.8 − h in
Fig. 4(b), where the CTM method is employed with the
bond dimensions D ¼ 45 and 55. The SSB phase exists
between the two peaks of the correlation length.
Moreover, the critical line BD separating the dense net

phase and dual dilute net phase terminates at a special point
B ¼ ð− ffiffiffiffiffiffiffiffiffiffiffi

3 − ϕ
p

− 1=ϕ;
ffiffiffiffiffiffiffiffiffiffiffi
3 − ϕ

p
− 1=ϕÞ=2, which is the

critical point of the decoupled antiferromagnetic ϕ2-state
Potts models characterized by two copies of Z3 parafer-
mion CFT with c ¼ 8=5 (Ref. [29]). However, our
numerics show that the full line BD is described by the
CFT with the central charge c ≃ 1.4, the as same as the
dense net phase. On the other hand, the critical line ED
separating the dense net phase from the SSB phase is
described by the CFTwith the central charge c ≃ 1.6, while
the continuous phase transition line FD between the DF

(a)

(b) (c)

FIG. 4. (a) The correlation length ξ obtained by the VUMPS
method with bond dimensions D along h axis of the phase
diagram. (b) The correlation length deduced from the CTM
method with bond dimensions D along the cut ĥ ¼ −0.8 − h.
h ¼ −0.4 sits on the self-dual line. (c) The entanglement
entropy S at the point ðh; ĥÞ ¼ ð−0.6; 0Þ. The blue line is S ¼
ðc=6Þ log ξþ S0 with the central charge c ¼ 7=5.
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topological phase and the SSB phase is characterized by the
CFT with a central charge c ≈ 1.4. Four critical lines meet
at a tetracritical point D ≈ ð−0.294; 0.030Þ. Using the
quantum duality, the complete phase diagram Fig. 1 is thus
fully established.
The universal feature of all gapped phases is the

degeneracies of dominant eigenvalues of the transfer
operators with periodic boundary condition. Since
jΨi ¼ j1i þ jbi, the twofold degenerate dominant eigen-
values of the DF topological phase correspond to h1j1i and
hbjbi. Because b anyons are condensed in the dilute net
phase, the fourfold degenerate eigenvectors belong to the
topological sectors h1j1i, hbjbi, h1jbi, and hbj1i. In the
dense net phase, however, the large nets dominate and b
anyons are logarithmically confined [24]. Because of the
translation symmetry breaking in the SSB phase, there are
two dominant eigenvectors with the momenta 0 and π for
each bra and ket of the topological sectors, leading to 16-
fold degeneracy. All these results have been confirmed in
our numerical results (detailed in the Supplemental
Material [30]).
Conclusion.—We have fully studied the non-Abelian

topological phase transitions out of a generic DF topologi-
cal state. The norm of the wave function is mapped into the
partition function of the two-coupled ϕ2-state Potts models.
With the tensor network representation and numerical TNS
methods, a global phase diagram has been fully established.
Previously, we showed that [24] the Z2 toric code topo-
logical phase corresponds to the partial-order phase of the
Ashkin-Teller model—two-coupled Ising models. Here we
further prove that the non-Abelian DF topological phase
can be mapped to an interlayer ordered phase of the two-
coupled ϕ2-state Potts models, instead of the previous
ðϕþ 2Þ-state Potts model [27].
Compared to the Hamiltonian approach, such a wave

function approach has many advantages in applying the
TNS methods to the quantum topological phase transitions
among intrinsic topological phases. A natural question is
how the conformal quantum criticality will be changed
when the dynamics of the parent Hamiltonian for the
generic DF topological phase is considered. The related
problems are under further investigation.
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ported by the National Key Research and Development
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