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Entangled states are an important resource for quantum computation, communication, metrology, and
the simulation of many-body systems. However, noise limits the experimental preparation of such states.
Classical data can be efficiently denoised by autoencoders—neural networks trained in unsupervised
manner. We develop a novel quantum autoencoder that successfully denoises Greenberger-Horne-
Zeilinger, W, Dicke, and cluster states subject to spin-flip errors and random unitary noise. Various
emergent quantum technologies could benefit from the proposed unsupervised quantum neural networks.
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Introduction.—With the ever-increasing complexity of
systems that our society deals with, the ab initio under-
standing of important features remains a distant dream.
However, one can distill many useful relations by simply
collecting data about such complex systems and studying
interdependencies. As our ability to gather, store and
process data has rapidly progressed, the computational
techniques to extract useful knowledge from data—
machine learning (ML)—have become much more power-
ful. One of the most popular ML techniques are neural
networks (NNs), which have found numerous applications,
from self-driving cars to drug discovery (see, e.g., [1–3]).
Depending on the data, different learning scenarios for

ML algorithms can be distinguished. If nothing is precisely
known about the algorithm’s desired outputs for the train-
ing inputs, the learning is called unsupervised or self-
supervised. Autoencoders (AE) are a prominent example
of NNs that learn without supervision, see, e.g., [3].
They have been used, e.g., to denoise bird songs in the
wilderness [4].
ML could benefit from the rapid progress of quantum

computing hard- and software (see, e.g., [5,6]). Moreover,
there are important ML tasks where the data comes as a
set of quantum, and possibly—highly entangled, states.
Examples include quantum cryptography (see, e.g., [7]),
metrology (see, e.g., [8,9]), and chemistry (see, e.g.,
[10,11]). ML is called quantum if it uses quantum algo-
rithms or quantum data (see, e.g., [12,13]).
Virtually every experimental preparation of a quantum

state introduces noise. Usually, it is hard to design a
denoising protocol. First, one has to identify and character-
ize all noise sources. Second, one has to invent a protocol
which corrects the noise without affecting any relevant
features of the quantum state. ML can automate this task.
As there is often no denoised reference state to compare
with, unsupervised learning is required.
Various quantum neurons have been proposed in [14–28].

We follow [14], since these NNs are capable of universal

quantum computation, the computational complexity per
training round scales at most quadratically with the depth of
the NN, the cost function has a clear operational meaning,
and the authors provide an open-source implementation. The
parameters of such a quantum NN (QNN) are classical
variables. In general, quantum parameters may be useful
[29], but for ML tasks without memory they can give only a
marginal improvement [30].
Classically simulable quantum AEs have been studied in

[31]. In [32] shallow quantum AEs have been introduced
for data compression. The QNNs in [32] are closely related
to the neurons from [14]. Contrary to a claim in [32] they
are universal. However, the authors of [32] restrict the class
of operations to get polynomial complexity scaling with the
width of the network. Data compression via AEs has been
demonstrated with photons [33]. In [34], it has been
proposed to train AEs for quantum data compression using
genetic algorithms on a classical computer. The trained
AEs have been implemented on superconducting qubits
[35]. Classical ML techniques have been used to design
experiments that produce entangled states [36,37] or useful
entangled states robust against noise [37,38]. The general
setting of quantum unsupervised ML has been studied
in [39].
In this Letter we construct quantum AEs capable of

quantum advantage for the purpose of denoising quantum
data. We apply them to single and continuously para-
metrized sets of small highly entangled states subject to
different kinds of noise. We observe excellent denoising
without fine tuning of the hyperparameters.
Quantum autoencoders.—ML algorithms numerically

solve variational problems. An NN is a variational class
of maps fv∶X → Y parametrized by a vector v. It is
constructed from simpler parametrized maps called neu-
rons. The outputs of a set of neurons—a layer—are fed into
the next layer. If layer n gets all its inputs from layers
k < n, the network is called feed forward (FF). The input
x ∈ X of the NN is the first layer, and the output fvðxÞ—the
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last. The number of layers is the depth of an NN, and the
maximal number of neurons per layer—its width. The
geometry of the neuronal interconnections—the topology
of an NN—and the choice of neurons determine the
variational class given by the NN. With suitable neurons
any map can be represented as a FFNN (FFNNs are
universal).
Let us assume that a number of correct input-output pairs of

the desiredmap—the training data fxi;yigLi¼1∈XL×YL—is
provided. The variational parameters in v are optimized such
that a cost function Cðfxi;yigLi¼1Þ¼ð1=LÞPL

i¼1d½fvðxiÞ;yi�
reaches a minimum. Here, d is an appropriate distance
measure. Typically the optimization employs some variant
of the gradient descent algorithm (see, e.g., [40]).
AnAE is an FFNNfor extracting themost relevant features

from the input data. The network has a bottleneck—a layer
with smaller width than the (equal) input and output layers.
The training data is a set fxi; xigLi¼1 of equal training inputs
and reference outputs. In general, the desired output for x is
not x itself: the bottleneck (see Fig. 1) should force the AE to
discard irrelevant information. Since no correct reference
outputs are provided, the training of AEs is unsupervised.
We specify the quantum neuron from [14] by attributing

a single qubit to every neuron. Let fj↑i; j↓ig denote an
orthonormal basis of a qubit. In each layer following the
input, the jth neuron acts by a unitary Uj on its own qubit
and the preceding layer. The noninput qubits are initialized
in j↓i. The kth layer, k > 1, of m neurons maps the state
ρk−1 of layer k − 1 onto

N kðρk−1Þ≡ trk−1½Uðρk−1 ⊗ ðj↓iouth↓jÞ⊗mÞU†�; ð1Þ

where the unitary U ≡Um � � �U1 is subject to optimization
(see Fig. 1). Note that this definition is related to the general
form of a quantum channel (see, e.g., [6,14,41,42]). The
quantum channel describing the full network withM layers
is N ðρinÞ ¼ NMð� � �N 2ðρinÞ � � �Þ. Our distance measure is
one minus the fidelity F. For training data fρini ; jψ ref

i igLi¼1

with pure desired outputs, Fðρ; jψiÞ ¼ hψ jρjψi and the
cost function reads

Cðfρini ; jψ ref
i igLi¼1Þ ¼ 1 − F̄ðfN ðρini Þ; jψ ref

i igLi¼1Þ; ð2Þ

where F̄ðfρi; jψ iigLi¼1Þ ¼ ð1=LÞPL
i¼1 Fðρi; jψ iiÞ ≤ 1. In

the following, we abbreviate pure ρini ¼ jψ in
i ihψ in

i j by jψ in
i i.

Due to the no-cloning theorem, it is impossible to use
copies of the training inputs jψ in

i i as reference outputs
jψ ref

i i. Instead, these states have to be prepared independ-
ently. If the data source is noisy, the paired states will be
different due to different noise realizations. However, if
these states share essential features, the AE can still be
trained. Below, we use half of the noisy training data as
input and half as reference output in unsupervised learning.
While, in practice, one has no access to the desired

outputs of the NN fjψ id
i igLi¼1, the performance of AEs is

best studied in a setting where these target states are known.
We call the learning process successful if the mean
validation function

F̄valðfρini ; jψ id
i igLi¼1Þ ¼ F̄ðfN ðρini Þ; jψ id

i igLi¼1Þ ð3Þ

is large, particularly, as compared to F̄ðfρini ; jψ id
i igLi¼1Þ

before the NN is applied. We define

FðiÞ
valðfρini ; jψ id

i igLi¼1Þ ¼ FðN ðρini Þ; jψ id
i iÞ;

FðiÞðfρini ; jψ id
i igLi¼1Þ ¼ Fðρini ; jψ id

i iÞ: ð4Þ

Note that the validation function, which compares
fN ðρini ÞgLi¼1 with the target states, differs from the fidelity
entering the cost function for training, which compares
fN ðρini ÞgLi¼1 with the noisy data.
For the classical simulation of the quantum AE we have

upgraded the MATLAB code from [14]. Most importantly,
we now use the Nadam [40,43] gradient descent algorithm.
The updated code is available at [44].
Noisy test states.—We consider highly entangled

Greenberger-Horne-Zeilinger (GHZ), W, Dicke, and cluster
states. Such states are important for quantum information
and quantum enhanced metrology [8,45,46]. We call

jGHZϕi ¼
1ffiffiffi
2

p ðj↑i⊗m þ eiϕj↓i⊗mÞ ð5Þ

anm-qubit GHZ state with phase ϕ or a GHZ-ϕ state. GHZ
states are macroscopic superposition states with maximal
entanglement depth. W, Dicke, and cluster states are
discussed in the Supplemental Material [47].
For practical applications the states have to be protected

from experimental noise. We investigate two complemen-
tary noise processes—spin-flip errors and small random
unitary transformations (see, e.g., [5,41,42])—and show
how quantum AEs can be used to denoise small GHZ, W,
Dicke, and cluster states.
For spin-flip errors we assume that for a time T all qubits

are flipped back and forth at some rate Γ. Thus each qubit
has a probability of p ¼ ð1 − e−2ΓTÞ=2 ≤ 0.5 to end up
in a flipped state. The flips of the jth qubit affect the

FIG. 1. Network architecture of an AE. The bottleneck prevents
the AE from just copying the input data to the output so that it has
to extract relevant features. Each neuron unitary acts on its qubit
and the connected qubits in the previous layer (e.g., gold or red).
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density matrix ρ of the initial, noiseless, m-qubit state
according to

Ejðp; ρÞ ¼ pσxjρσ
x
j þ ð1 − pÞρ;

σxj ¼ ⨂
j−1

1

Id ⊗ σx ⨂
m

jþ1

Id; ð6Þ

where Id ¼ j↑ih↑j þ j↓ih↓j is the identity and σx ¼
j↑ih↓j þ j↓ih↑j the spin-flip operator for a single qubit.
The total noise channel is obtained by concatenating Ej for
all qubits j ∈ f1;…; mg:

Eðp; ρÞ ¼ Emðp; Em−1ðp; � � � E1ðp; ρÞ � � �ÞÞ ð7Þ

We assume that in each experimental shot a subset J ⊆
f1; 2;…; mg of a total ofm qubits is flipped. The probability
of ρJ ¼

Q
j∈J σ

x
jρ

Q
j∈J σ

x
j is PpðJÞ ¼ pjJjð1 − pÞm−jJj.

Note that states ρJ with different J may coincide or have
nonorthogonal supports.
Our unitary noise is given by the evolution with a random

time-dependent Hamiltonian. The noise strength is captured
by a dimensionless parameter q. See the Supplemental
Material [47] for details. A random Hamiltonian, in general,
includes dephasing. However, since GHZ states are particu-
larly sensitive to dephasing, we discuss it separately in the
Supplemental Material [47].
Denoising a single state.—First, we show how well an

AE can denoise four-qubit GHZ states with zero phase. We
employ two AE topologies. One is the deep QNN
denoted by ½4; 2; 1; 2; 4� and the other one is a stacked
QNN: we train the AE ∼½4; 1; 4� but denoise with

∼½4; 1; 4; 1; 4� by applying ½4; 1; 4� twice. Each
training employs 200 training pairs and takes 200 steps of
the gradient descent algorithm (200 training rounds). We
test the trained AEs on 200 GHZ-0 states exposed to the
respective noise. The validation function, which, ideally,
should reach one, is the fidelity between the denoised
output of the AE and the GHZ-0 state.
Figure 2 summarizes our results in the case of spin-flip

errors. For each spin-flip probability p we, first, draw the
training data and one set of L ¼ 200 noisy test states
fjψ iigLi¼1 according to the probability distribution PpðJÞ.
We independently train both AE topologies. For each
topology, we apply the respective AE to every jψ ii and
get outputs ρi. To assess the performance of the AE, we
evaluate the mean validation function after denoising—
F̄valðfjψ ii; jGHZ0igLi¼1Þ (yellow circles and violet
crosses)—and compare it to its value before denoising—
F̄ðfjψ ii; jGHZ0igLi¼1Þ (red dots). We find that up to p ¼
0.3 both AE topologies remove the spin-flip errors almost
ideally, see the Supplemental Material [47] for a discussion.
The error bars of F̄val indicate the standard deviation

ΔFval ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðFðiÞ
val − F̄valÞ2

q
. Note that, contrary to FðiÞ

val,

F̄val þ ΔFval can exceed one. For the input,ΔF¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̄ð1−F̄Þ

p
is large since FðiÞ ∈ f0; 1g. Instead of adding error bars
to F̄, we show how fjψ iigLi¼1 compares to the ideal
probability distribution PpðJÞ of spin-flipped GHZ-0 states.
The blue plus signs mark the expectation value of F,
F̄∞ ¼ ð1 − pÞ4 þ p4. Their vertical bars indicate the stan-
dard deviationΔF∞=

ffiffiffiffi
L

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̄∞ð1 − F̄∞Þ=L

p
, which char-

acterizes the spread of the average F̄ðfjψ ii; jGHZ0igLi¼1Þ for
independent draws of L noisy states.
Similar results for unitary noise, its combination with

spin-flip errors, and for dephasing are presented in the
Supplemental Material [47]. The successful denoising of
W, Dicke, and cluster states subject to spin-flip errors and
unitary noise is also demonstrated in the Supplemental
Material [47]. We observe that genuinely deep AEs, e.g.,
with a ½4; 2; 1; 2; 4� topology, perform better than shallow or
even stacked ones.
Denoising multiple states.—So far we have demon-

strated that an AE can denoise the state on which it has
been trained. But it can do better. An AE can learn to
denoise multiple target states, including ones not contained
in the training data. It is crucial, though, that the noise
process is sufficiently different from the transformations
connecting the target states. Otherwise, the attribution of
noisy states to target states becomes ambiguous. Assume
that an experiment encodes some information into the
phase of a GHZ state, and that this GHZ state is affected by
spin-flip errors. We show that an AE can denoise the output
of such an experiment. We consider three-qubit states and
employ the simplest possible AE topology: ∼½3; 1; 3�.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

expected noise
noisy sample
[4,2,1,2,4] denoised
[4,1,4,1,4] denoised

FIG. 2. Quantum AEs removing spin-flip errors from the
GHZ-0 state. We show the average fidelity of noisy test states
with the GHZ-0 state before denoising (red dots, F̄) and after
denoising (yellow circles and violet crosses, F̄val). Error bars
display standard deviations. Blue plus signs show F̄∞ � ΔF∞.
The arrays ½4; 2; 1; 2; 4� and ½4; 1; 4; 1; 4� indicate different AE
topologies. 200 noisy training pairs, training rounds, and noisy
test states per p.
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As a first example, we imagine an experiment which
outputs either a GHZ state with zero phase, GHZ-0, or with
phase π, GHZ-π. The AE is trained for 200 rounds on 100
pairs of noisy GHZ-0 states and 100 pairs of noisy GHZ-π
states. To test the performance of the trained AE, we apply it
to 100 noisy GHZ-0 states and 100 noisy GHZ-π states and
compare each output to the respective noiseless state.
Figure 3(a) shows that the AE excellently denoises the
two GHZ states up to a spin-flip probability of p ¼ 0.4.
Note that theAEdeduceswhether the experiment has given a
phase of zero or π from the particular noisy input state alone.
Our second example is even more demanding. We

assume that the experiment can output a GHZ state with
any phase ϕ ∈ ½0; π�. We restrict the phase to ½0; π� because
it is impossible to distinguish a GHZ-ϕ state with jJj
flipped qubits from a GHZ-(−ϕ) state with 3 − jJj flipped
qubits. The training involves only four equidistant training
phases ϕi between ϕ0 ¼ 0 and ϕ4 ¼ π. It, again, employs
100 training pairs per ϕi and takes 200 training rounds. We
test the AE on 200 noisy GHZ-ϕ states with randomly
chosen phases ϕ ∈ ð0; πÞ.
Considering a GHZ-ϕ state with ϕ ∉ πZ roughly dou-

bles the number of different spin-flipped states as compared
to ϕ ∈ πZ. Only for ϕ ∈ πZ, the flipped m-qubit statesQ

j∈J σ
x
j jGHZϕi and

Q
j∈MnJ σxj jGHZϕi with J ⊆ M ¼

f0; 1;…; mg are, up to a global phase, identical. As a
consequence, for three-qubit GHZ-ϕ states with ϕ ∈ πZ,
correcting spin-flip errors with jJj ¼ 1 suffices for perfect
denoising. For ϕ ∉ πZ, errors with jJj ¼ 2 and jJj ¼ 3
need to be regarded separately.
Figure 3(b) displays the capability of the AE to denoise

GHZ states with a random phase. Note that for p ¼ 0 the

fidelity of the outputs with the test states reaches one.
Because of the bottleneck, the AE cannot learn the identity
operation; nevertheless it correctly reproduces GHZ states
with phases not contained in the training data. The AE
improves the average value of the validation function for
p ≤ 0.35, but it leaves a considerable variance (yellow
circles). However, if we keep only the test states with
jJj ≤ 1, we observe excellent denoising up to p ¼ 0.2
(violet crosses).
Discussion.—We have constructed quantum AEs and

have shown that these AEs can remove spin-flip errors
and random unitary noise from small GHZ, W, Dicke, and
cluster states. Particularly, correcting spin-flip errors has
succeeded for a set of GHZ states parametrized by a
continuous phase parameter. Thus, AEs for denoising
can be used not only for state preparation but also for
metrology. In principle, our method can be applied to any
set of quantum states subject to any kind of noise. Further
possible applications of quantum AEs include data com-
pression, quantum error correction, and parametrized state
preparation.
We expect that larger input states will require deeper

networks. The number of quantum gates needed for one
application of the fully connected AE scales exponentially
with the width but only linearly with the depth of the
network. The exponential scaling can be avoided by
constraining the QNN, e.g., using sparse networks as
discussed in the Supplemental Material [47].
Small universal quantum computers have been realized

on several physical platforms, e.g., superconducting qubits
and trapped ions [62,63]. If the state to be denoised is
prepared on the same platform as the AE, both may be

(a) (b)

FIG. 3. ½3; 1; 3� quantum AEs correcting spin-flip errors in mixtures of GHZ-ϕ states with different phases ϕ. We show the average
fidelity of noisy test states with the respective noiseless GHZ-ϕ states before denoising (red dots) and after denoising (yellow circles).
Error bars display standard deviations. For each p: 100 training pairs per training phase, 200 training rounds, and 200 test pairs. (a) Fifty-
fifty mixture of GHZ-0 and GHZ-π states, both for training and testing. Blue plus signs show F̄∞ � ΔF∞. (b) Training phases
f0; π=3; 2π=3; πg, and testing on random phases ϕ ∈ ð0; πÞ. Blue squares before denoising and violet crosses after denoising are
obtained for the test states with jJj ≤ 1.
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affected by equal noise, and the AE may become too noisy
for denoising. However, there is a great interest in hybrid
systems, which have been demonstrated, e.g., for super-
conducting qubits coupled to atomic and spin ensembles
and for trapped ions with cold atoms [64–66]. Our proposal
can help to denoise states from a noisy platform using a
well-controlled one, or to remove deteriorating effects
introduced at the interface between the coupled platforms.
The impact of noise affecting the AE itself is discussed
in [14,67].
Training an AE requires much more computational

resources than testing it. To approach the experimental
implementation, a small AE trained on a classical computer
can be tested on a quantum computer, as has been done in
[35] for data compression. Moreover, the photonic reali-
zation [33] of a compressing quantum AE suggests that also
the training of our AE is within the reach of current
quantum technology.
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