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Noise in quantum computing is countered with quantum error correction. Achieving optimal
performance will require tailoring codes and decoding algorithms to account for features of realistic
noise, such as the common situation where the noise is biased towards dephasing. Here we introduce an
efficient high-threshold decoder for a noise-tailored surface code based on minimum-weight perfect
matching. The decoder exploits the symmetries of its syndrome under the action of biased noise and
generalizes to the fault-tolerant regime where measurements are unreliable. Using this decoder, we obtain
fault-tolerant thresholds in excess of 6% for a phenomenological noise model in the limit where dephasing
dominates. These gains persist even for modest noise biases: we find a threshold of ∼5% in an
experimentally relevant regime where dephasing errors occur at a rate 100 times greater than bit-flip errors.
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The surface code [1,2] is among the most promising
quantum error-correcting codes to realize the first gener-
ation of scalable quantum computers [3–5]. This is due to
its two-dimensional layout and low-weight stabilizers that
help give it its high threshold [1,6,7], and its universal set of
fault-tolerant logical gates [1,8–11]. Ongoing experimental
work [12–15] is steadily improving the surface code
error rates. Concurrent work on improved decoding algo-
rithms [6,7,16–19] is leading to higher thresholds and
lower logical failure rates, reducing the exquisite control
demanded of experimentalists to realize such a system.
Identifying the best decoder for the surface code depends

critically on the noise model. Minimum-weight perfect
matching (MWPM) [20,21] is near optimal in the case of
the standard surface code with a bit-flip noise model [1] and
for a phenomenological error model with unreliable mea-
surements [7]; see Refs. [22,23]. More recently, attention
has turned to tailoring the decoder to perform under more
realistic types of noise, such as depolarizing noise
[16–18,24,25] and correlated errors [26–28]. Of particular
note is noise that is biased towards dephasing: a common
feature of many architectures. With biased noise and
reliable measurements, it is known that the surface code
can be tailored to accentuate commonly occurring errors
such that an appropriate decoder will give substantially
increased thresholds [29,30]. However, these high thresh-
olds were obtained using decoders with no known efficient
implementation in the realistic setting where measurements
are unreliable and the noise bias is finite.
In this Letter we propose a practical and efficient decoder

that performs well for both finite bias and noisy measure-
ments, demonstrating that the exceptional gains of the
tailored surface code under biased noise extend to the fault-
tolerant regime. We use the MWPM algorithm together
with a recent technique to exploit symmetries of a given

quantum error-correcting code [31]. Rather than using the
symmetries of the code, we generalize this idea and use the
symmetries of the entire system. Specifically, we exploit
the symmetries of the syndrome with respect to its incident
error model. Applied to pure dephasing noise, our decoder
exploits the one-dimensional symmetries of the system by
pairing the defects of each symmetry separately. Crucially,
our approach readily extends to the situation where
measurements are unreliable, as well as the finite-bias
regime where some low-rate errors violate the symmetries
we rely on. We demonstrate that our approach leads to
fault-tolerant thresholds exceeding 6% for infinite bias,
with these substantial gains persisting to modest biases.
Comparing with the optimal threshold of 3.3% [22,23] for
conventional decoders that correct the bit-flip and dephasing
errors of the same noise model separately, our results
represent a very significant improvement in the level of
noise that can be tolerated in practical quantum technologies.
Surface code tailored for dephasing.—We define the

surface code in a rotated basis with X- and Y-type
stabilizers, Sv ∈ S, to provide additional syndrome infor-
mation about Z errors; see Fig. 1 and its corresponding
caption. We consider errors E ∈ E drawn from a subgroup
of the Pauli group E ⊆ P. We define the syndrome as a list
of the locations of defects. For a given error, defects lie on
vertices v such that SvEjψi ¼ ð−1ÞEjψi for code states jψi
satisfying Svjψi ¼ jψi for all v.
Decoding with symmetry.—We first consider the infinite

bias (pure-dephasing) error model generated by only Z
errors, EZ ¼ hZfi. Errors drawn from this model respect
one-dimensional symmetries of the lattice, as in Fig. 1. A
single Z error generates two defects on each of its adjacent
rows and columns. Up to boundary conditions, any error
drawn from EZ will respect a defect parity conservation
symmetry on each of the rows and columns of the lattice.
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Let us make this notion of a symmetry rigorous.
A symmetry is specified by a subgroup of the stabilizer
group Ssym ⊆ S. Elements S ∈ Ssym are defined with
respect to an error model E such that they satisfy SEjψi ¼
ðþ1ÞEjψi for all E ∈ E and code states jψi. This general-
izes Ref. [31] where symmetries are defined for the special
case where E ¼ P; the symmetry is now a function of the
combined system of both the code and the error model.
For general Pauli error models, the surface code has

global symmetries [2];
Q

v∈G Sv ¼ 1 with G the set of either
black or white vertices where we briefly assume periodic
boundary conditions to illustrate this point. Under pure
dephasing noise, the same model has a much richer set of
one-dimensional symmetries. Observe that SL ¼ Q

v∈L Sv,
with L the set of vertices on a row or column, is a product
of Pauli Z matrices. As such, the one-dimensional stabi-
lizers SL commute with errors drawn from EZ and are
therefore symmetries. The set of all such SL generate Ssym

with respect to EZ.
Now consider what this symmetry implies for an

arbitrary syndrome in our error model. A direct conse-
quence of the definition of a symmetry Ssym is that, for pure
dephasing noise, there will always be an even number of
defects measured by the subsets of stabilizers whose
product gives elements of Ssym. We can design a decoder
that exploits this property of these subsets. Specifically, we
can consistently pair the defects detected by the stabilizers
of these subsets using, say, MWPM, or another suitable
pairing algorithm such as that of Ref. [32]. Collections of

defects that are combined with pairing operations on
sufficiently many symmetries can be neutralized with a
low-weight Pauli operator. We say that such a collection is
locally correctable [31]. For the surface code under pure
dephasing noise, by performing pairing over the one-
dimensional lattice symmetries, the edges returned from
MWPM form the boundary of the error; see Fig. 1(right).
The interior of the boundary determines the correction.
Such a decoder is readily extended to the fault-tolerant

setting where measurements are unreliable and may give
incorrect outcomes. A single measurement error will
violate the defect symmetries of the two-dimensional
system. Following the approach of Ref. [1], we can recover
a new symmetry in the fault-tolerant setting in (2þ 1)-
dimensional spacetime by repeating stabilizer measure-
ments over time, see also Ref. [31]. A symmetry is
recovered by taking the parity of pairs of sequential
measurement outcomes, with odd parity heralding a defect.
This spacetime symmetry is generic to our proposal here. In
this situation, up to the lattice boundaries, the symmetries
represent constraints among collections of defects lying on
(1þ 1)-dimensional planes. Curiously, unlike the phenom-
enological bit-flip noise model for the surface code [7,33],
the biased phenomenological error model considered here
is anisotropic in spacetime. We emphasize the importance
of checking for temporal logical errors, consisting of strings
of sequential measurement errors, as they may introduce
logical failures while performing code deformations [34].
The symmetries of the system are altered at lattice

boundaries. We can adapt the decoder to account for this
by adding a pair of defects at each time step to all vertices
where a stabilizer is not imposed at the boundary; see Fig. 1
(left). These defects can be paired to other defects within
their respective (1þ 1)-dimensional planes of symmetry.
Otherwise, they can be matched together freely in the case
that they do not need to be paired.
Decoding with finite bias.—We next adapt our decoder

to deal with low-rate X and Y errors in addition to high-rate
Z errors. For simplicity we will describe this modification
for the case of periodic boundary conditions and where
measurements are reliable. We give a technical description
of all the decoders we present in the Supplemental
Material [35].
The decoder for infinite bias noise will pair each defect

of the system twice: once to a horizontally separated defect
and once to a vertically separated defect. Low rate X and Y
errors violate the one-dimensional symmetries that enable
us to use the strategy described above, but we can weakly
adhere to the strategy as follows. In our modified decoder
we pair all defects twice: once where we strongly bias the
decoder to pair defects horizontally, and a second time
where we strongly bias each defect to pair vertically. Unlike
in the infinite-bias case, we permit our decoder to pair
defects that are not within their same row or column. We
penalize such pairings according to the amount of noise

FIG. 1. (Left) The surface code with qubits on the faces of a
square d × d lattice. The vertices v are bicolored such that
stabilizer generators Sv ¼

Q
∂f∋v Xf (Sv ¼

Q
∂f∋v Yf) lie on

black (white) vertices, and ∂f ∋ v denotes the faces f touching
v. Examples are shown at the top of the figure. The syndrome
patterns for Pauli X, Y, and Z errors are shown at the bottom of
the figure. (Right) The surface code with periodic boundary
conditions. Our noise model is such that Z errors occur at a higher
rate than Pauli X or Y errors. The syndromes of Z errors, shown at
the top left of the figure, respect one-dimensional symmetries,
shown as blue and green lines. We can therefore consistently
match vertices along the rows and columns of the lattice. The
edges returned from each MWPM subroutine reproduce the
boundary of the faces that support the error. Lower-rate non-
dephasing errors may violate the symmetries of the system
(bottom, right).
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bias. This can be achieved in our input into the MWPM
algorithm by assigning high weights to edges for pairs of
defects that are not aligned on the same row or column,
depending on the respective matching.
In the case of finite bias the collections of defects that are

connected through the edges returned by pairing may not
be locally correctable. We deal with this issue with addi-
tional use of MWPM to complete the decoding procedure.
One can show that there will be an even number of defects
in each collection of defects connected by edges. Therefore,
the parity of defects on black and white vertices are equal.
We call collections of defects with an even (odd) parity of
defects on black and white vertices “neutral” (“charged”).
Neutral clusters can be locally corrected. Remaining
charged collections of defects can be made neutral by
pairing them with other nearby charged collections of
defects. This final pairing ensures the collections of
connected defects are locally correctable.
Biased noise models.—We will test our decoder under

two scenarios: with a biased noise model and ideal
measurements, and with a phenomenological biased noise
model with unreliable measurements. At each time step,
qubits are subjected to an error with probability p. Pauli Z
errors occur at high rate ph:r: ¼ pη=ðηþ 1Þ, while X and Y
errors occur at a lower rate, pl:r: ¼ p=2ðηþ 1Þ. The
phenomenological (ideal-measurement) biased noise
model gives an incorrect measurement outcome with
probability q ¼ p (q ¼ 0).
It is important to consider whether the phenomenological

noise model we introduced is compatible with a noise-bias
setting [36]. As we now demonstrate, it is possible to
measure stabilizers and maintain the bias. Following the
standard approach [1], stabilizers are measured by prepar-
ing an ancilla a in an eigenstate of X, then applying
entangling gates between the ancilla and the qubits that
support the stabilizer, and finally measuring the ancilla
qubit in the X basis. To measure Sv for black vertices v we
apply

Q
∂f∋v CXa;f, where CXa;f¼ð1þZaþXf−ZaXfÞ=2

is the controlled-not gate. To measure white vertex stabi-
lizers, we replace the CXa;f gates with CYa;f gates. These
gates differ by an expðiπZf=2Þ rotation.
We can now justify that stabilizer measurements per-

formed this way preserve the noise bias. Specifically, we
demonstrate that no steps in the stabilizer circuit cause
high-rate errors to introduce X or Y errors to the data qubits
of the surface code. The CXa;f commutes with Z errors that
act on the ancilla. As such, it will not create high rate X or Y
errors on the data qubits. Similarly, the single-qubit rotation
that maps CXa;f onto CYa;f commutes with the high-rate
errors, and will therefore only map low-rate errors onto
other low-rate errors. Ancilla qubits are vulnerable to high-
rate Pauli Z errors. This is reflected by the error model that
has a high measurement error rate, q ¼ p. An additional
concern is that the entangling gates such as CXa;f may
increase the frequency that low-rate errors occur. This will

depend on the physical implementation, and recent pro-
posals have demonstrated that noise-bias-preserving CXa;f

gates are indeed possible in some architectures [37].
Numerical simulations.—We simulate the performance

of our decoder for the surface code with periodic boundary
conditions against the phenomenological biased noise
model, using 30 000 trials per code distance and physical
error probability. We used the critical exponent method of
Ref. [7], fitting to a quadratic model, to obtain threshold
estimates with jackknife resampling over code distances to
determine error bounds. Because of the anisotropy in
spacetime, we might expect the thresholds of logical errors
in the spatial and temporal direction to differ. We report a
failure if a logical error occurs in either the spatial or
temporal direction. Our results are shown in Fig. 2. We
identify a threshold of 6.32(3)% for pure dephasing, and
thresholds of ∼5% for biases around η ¼ 100. Our decoder
begins to outperform the optimal values for standard
methods, where bit-flip and dephasing errors are corrected
separately, at η ∼ 5. These results demonstrate the advan-
tage of using our decoder in the fault-tolerant setting, even
if the noise bias is modest.
We have simulated the performance on the surface code

with boundaries, yielding similar results. Figure 3 demon-
strates a threshold using the fault-tolerant decoder for the
surface code with boundaries where η ¼ 100. In this case
we only measure spatial logical errors because there are no
topologically nontrivial temporal errors. Remarkably, the
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FIG. 2. Threshold error rates pth as a function of noise bias η for
both spatial and temporal logical errors for the surface code with
periodic boundary conditions. The points show threshold esti-
mates together with 1 standard deviation error bars. The points at
smallest and largest bias values correspond to η ¼ 0.5 (depola-
rizing noise), and η ¼ ∞ (pure dephasing), respectively. The
solid line represents the optimal performance for the standard
surface code with phenomenological noise of a decoder that deals
with bit-flip errors and dephasing noise separately. Codes with
distance d ¼ 12, 14, 16, 18, 20 and d ¼ 24, 28, 32, 36, 40 were
used for finite and infinite bias threshold estimates, respectively.
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threshold is very similar to the threshold obtained in the
case with periodic boundary conditions where we also
count logical failures along the temporal direction as well.
This is surprising given the anisotropy of the decoding
problem in the spatial and temporal directions.
We benchmark our decoder against the optimal perfor-

mance of the surface code under the biased noise model. In
the absence of optimal fault-tolerant thresholds (say, from
statistical mechanical arguments [38]), we benchmark
using the ideal measurement model. In this case, optimal
performance corresponds to the zero-rate hashing bound,
which is achievable using a ML decoder [16,30]. We see in
Fig. 4 that our decoder underperforms in comparison to the
ML decoder, suggesting that there is considerable scope
for further improvements. A natural proposal would be to
incorporate belief propagation into the MWPM algorithm.
Choices of boundary conditions also play a role. We note
that our decoder applied to the surface code with bounda-
ries can achieve the optimal threshold of pth ∼ 1=2 for pure
dephasing noise. However, it underperforms similarly to
that shown in Fig. 4 at finite biases.
Low error rates.—The performance of the decoder

below threshold will determine the resources required to
perform quantum computation. We now speculate on the
logical failure rates where the physical error rate is low,
specifically p ≪ 1=d. Using conventional decoding meth-
ods the logical failure rate decays as Oðpδ

ffiffi
n

p Þ [1,39] with
n ¼ d × d the code length and δ a constant. The high-
threshold at infinite bias is indicative that the decoder can
tolerate up to ∼n=2 dephasing errors [29,30]. We may
therefore expect that the logical failure rate will decay with
improved scaling, Oðph:r:

αnÞ, for some constant α.

At finite noise bias, the improved scaling in logical
failure rate with n can only persist up to some critical
system size. Above some system size that depends on η, we
expect that the most likely error that will cause a logical
failure will be due a string consisting of ∼

ffiffiffi
n

p
low-rate

errors. Up to constant factors, this will occur for some n
where ph:r:

αn ≪ pl:r:
δ
ffiffi
n

p
. Nevertheless, given high bias, the

decoder will vastly improve logical error rates in the regime
where the most likely failure mechanisms are due to long
strings of low-rate error events.
We contrast this with bias nullification schemes by

concatenation [40,41]. These approaches increase the
effective rate that uncommon errors act on the surface
code by a factor equal to the number of qubits of each
repetition code, leading to worse performance at low error
rates. Moreover, they can only tolerate at most ∝

ffiffiffi
n

p
high-

rate errors.
Extending again to the fault-tolerant case, temporal-

logical errors are caused by strings of measurement errors
that occur at a high rate. We should consider increasing the
number of repetitions T of the error-correction cycle
between code deformations to reduce the likelihood of
temporal logical failures. Choosing T ∼ 2δ

ffiffiffi
n

p
logpl:r:=

logp will ensure temporal errors will occur at a rate similar
to spatial logical errors,∼pl:r:

δ
ffiffi
n

p
, where we have assumed a

temporal logical error occurs with likelihood ∼pT=2. To
achieve the target logical failure rate of the system,
although the qubits will be occupied for a longer time to
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FIG. 3. Numerical data demonstrating a finite threshold in
the fault-tolerant setting. Logical (spatial) failure rate f for
the surface code with boundaries shown as a function of the
rescaled error rate x ¼ ðp − pthÞd1=ν with bias η ¼ 100 and
pth ¼ 4.96ð1Þ%. The solid line is the best fit to the model
f ¼ Aþ Bxþ Cx2. The insets show the raw sample means over
30 000 runs for various values of p.
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FIG. 4. Threshold error rates pth as a function of noise bias η for
the surface code with periodic boundary conditions and ideal
measurements. The points show threshold estimates with 1
standard deviation error bars. The points at smallest and largest
bias values correspond to η ¼ 0.5 (depolarizing noise), and
η ¼ ∞ (pure dephasing), respectively. The solid line, which is
the zero-rate hashing bound for the associated Pauli error
channel, represents threshold error rates that are achievable with
ML decoding [30]. Codes with distance d ¼ 24, 28, 32, 36, 40
and d ¼ 48, 56, 64, 72, 80 were used for finite and infinite bias
threshold estimates, respectively.
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decrease the failure rate of temporal logical errors, the
associated decrease in the two spatial dimensions will result
in a net improvement on resource scaling using our system.
Discussion.—Minimum-weight perfect matching has

formed the backbone of topological quantum error correc-
tion [1,7,19,31,33,42,43]. The realization that we can
design MWPM decoders with knowledge of the sym-
metries of the code or system opens up a number of
new avenues for decoding algorithm design. A multitude of
codes have yet to be explored, as well as their interaction
with specialized noise models that reflect the errors that
occur in the laboratory. Significant improvements in fault-
tolerant thresholds obtained though tailored codes and
realistic noise models, such as those we have demonstrated
here, offer great promise for the realization of practical
quantum technologies.
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