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In multivalley semiconductors, the valley degree of freedom can be potentially used to store, manipulate,
and read quantum information, but its control remains challenging. The valleys in bilayer graphene can be
addressed by a perpendicular magnetic field which couples by the valley g factor gv. However, control over
gv has not been demonstrated yet. We experimentally determine the energy spectrum of a quantum point
contact realized by a suitable gate geometry in bilayer graphene. Using finite bias spectroscopy, we
measure the energy scales arising from the lateral confinement as well as the Zeeman splitting and find a
spin g factor gs ∼ 2. gv can be tuned by a factor of 3 using vertical electric fields, gv ∼ 40–120. The results
are quantitatively explained by a calculation considering topological magnetic moment and its dependence
on confinement and the vertical displacement field.
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Introduction.—Quantum devices rely on the control of a
degree of freedom (DOF) that can often be described by a
two-level system. A double quantum dot containing one
electron is an ideal prototype of this concept with the
disadvantage that charge noise limits coherence times.
The spin DOF offers larger coherence times, but spins
are notoriously difficult to manipulate. For materials with
vanishing spin-orbit interaction, such as Si and C, the g
factor has been shown to be gs ∼ 2 close to the value for
free electrons [1–3]. For materials with large spin orbit
interactions, g factors can get as large as gs ∼ 50 in the
case of InSb [4]. However, the tunability of the g factor,
e.g., by gate voltages, is limited.
Charge carriers in graphene offer another DOF, the

valley quantum number. Because of the underlying sym-
metries, the valley DOF can be described as a two-level
system in analogy to the spin DOF [5]. Here, we focus on
the experimental characterization of the energy spectrum of
a quantum point contact (QPC) in bilayer graphene. The
confinement potential, the position of the Fermi energy, as
well as the nature of charge carriers are fully controlled by
gate voltages. In contrast to two-dimensional systems, a
finite bias applied across a quantum device can directly be
converted to energy scales of the quantum device since the
bias voltage will mainly drop over the confined structure
which exhibits the largest resistance in the system. We first
demonstrate that we can measure the single particle level
spacing in a bilayer graphene QPC. At finite magnetic field
B, spin levels split because of the Zeeman effect. Using

finite bias spectroscopy we measure a spin g factor gs ∼ 2
as expected. The valley DOFs have a nontrivial topology
that leads to a Berry curvature and a topological orbital
magnetic moment [6]. In our experiment we measure a
valley splitting which is linear in perpendicular magnetic
field. If compared to the Zeeman splitting we obtain a
valley g factor that can be tuned by a factor of 3, i.e., from
∼40 to ∼120, with vertical displacement field D. Our band
structure calculations are consistent with this finding.
Further reduction of the valley splitting occurs once the
lateral confinement due to the constriction is taken into
account, in agreement with our experiment.
Device fabrication.—The device was fabricated as

described in Ref. [7]. Bilayer graphene is encapsulated in
hexagonal boron nitride (hBN) and an additional few layer
graphite flake serves as a high quality back gate (BG) [8,9].
The sample is imaged with atomic force microscopy, see
Supplemental Material [10]. Bubble-free regions are chosen
for the fabrication of split top gates (SG) with a gap of
120 nm. A 35 nm thick layer of Al2O3 is deposited on the
SGs. Channel gates (CGs) are fabricated on top of the
insulator and aligned normal to the channel axis. Graphene is
contacted by 1D contacts [15]. Figure 1(a) shows a sketch of
the device structure. There are three CGs that generate
QPC1, QPC2, and QPC3. Unless stated otherwise the data
presented are taken on QPC3. Transport measurements are
performed at 1.8 K with standard lock-in techniques.
To characterize the device, we measured the two-

terminal conductance GðVBG; VSGÞ while keeping VCH
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grounded, see Fig. 1(b). The minimum at VBG ¼ −0.3 V
corresponds to charge neutrality in the regions not covered
by the SG. Along the diagonal, a conductance minimum,
related to charge neutrality underneath the SG, occurs. D
increases in the direction of the arrow [Fig. 1(b)]. G
saturates at approximately 10e2=h due to the formation
of a narrow channel containing few electric modes.
Ballistic transport in the channel is confirmed by Fabry-
Pérot resonances, shown in the Supplemental Material [10].
In order to pinch-off the channel VBG and VSG are kept

along the diagonal line. Then we sweep VCH, which
controls the number of occupied modes in the channel.
Figure 1(c) (orange and purple curve taken at the SG/BG
combination indicated by the respective dot) show the
conductance of the QPC after subtracting a series resistance
originating from the Ohmic contacts (see Supplemental
Material [10]). For all presented data, a suitable series
resistance is subtracted. The larger VBG, the higher VCH
required to pinch-off the channel (see Supplemental
Material [10]). As VBG and VSG are increased, D in the
barriers and in the channel increases [from purple to blue
to the orange dot in Fig. 1(b)]. In general, we observe
conductance quantization at values n × 4e2=h. The number
4 accounts for spin and valley degeneracies [7,16]. For
small VBG orD, [purple curve in Fig. 1(c)], the first plateau
is observed at 4e2=h. For larger VBG or D (orange curve),
the lowest plateau is smeared out while the higher ones
occur at the expected values.

In order to extract the relevant energy scales of the
system we perform finite bias spectroscopy measurements.
Figures 1(d), 1(e) show G and the transconductance
dG=dVSG as a function of dc source-drain bias voltage
Vsd and VCH. Dark areas correspond to low values of the
transconductance, i.e., zero slope, where G itself displays
plateaus, see Fig. 1(d). As the bias exceeds the level
spacing, G is no longer quantized. Similar features are
known from QPCs in AlGaAs-GaAs and have been
discussed in Ref. [17]. The height of the diamondlike
features corresponds to the energy spacing between the
levels. Figure 1(f) shows the energy spacings as a function
of mode number for various VBG along the line in Fig. 1(b),
i.e., various D. For larger G, more modes occupy the 1D
channel. A deeper channel corresponds to steeper walls in
the confinement potential and therefore to larger energy
level spacings. For QPCs in AlGaAs-GaAs heterostructures
the opposite behavior is observed. In this case, the 1D
channel is depopulated by laterally squeezing it with split-
gate voltages, making the channel narrower and giving rise
to larger level spacings for smaller mode number. The data
in Fig. 1(f) also show that level spacings for a given mode
number increase for smaller VBG, i.e., smallerD. One needs
to consider that the same number of occupied modes for a
decreased back gate voltage corresponds to a decreased
VSG and VCH. This, in general, corresponds to less steep
walls and a narrower potential, i.e., larger confinement
energies. This argument holds preferentially for a small
number of occupied modes and becomes obsolete for
large numbers.
Magnetic field dependence.—Next, we discuss how the

fourfold degenerate states split in a magnetic field. Zeeman
splitting of spin states [6,16,18] occurs for any magnetic
field orientation. Valley splitting, on the other hand, is an
orbital effect [6], and will therefore only occur for B⊥. In
analogy to the gs factor characterizing spin splitting gsμBB,
we introduce the valley g factor gv for states that split
linearly in B⊥. The schematic in Fig. 2(a) indicates how
valley degenerate states (dark and light blue) Zeeman split.
In Fig. 2(b) the valley splitting in B⊥ far exceeds the
spin splitting.
We first show transconductance data as a function of in-

plane magnetic field Bk in Fig. 2(c). To identify the origin
of the splitting, we show the Bk dependence in QPC2 for
ðVBG; VSGÞ ¼ ð7 V;−4 VÞ. The splitting can be resolved
for Bk > 2 T. At Bk ¼ 8 T, additional gaps, i.e., plateaus
in the conductance, are clearly observed in Fig. 2(c). The
splittings are linear in Bk and compatible with gs ∼ 2, as
expected for graphene. Figure 2(d) shows the perpendicular
magnetic field dependence up to 1.2 T at ðVBG; VSGÞ ¼
ð4.5 V;−2.93 VÞ for QPC3. At B ¼ 0, the plateaus of the
conductance occur at a sequence of G ¼ 4, 8, 12, 16, 20,
24, and 28e2=h corresponding to the black regions where
dG=dVCH ¼ 0. For B⊥ > 0.3 T the mode splitting can be
resolved. As a result, additional plateaus are observed with
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FIG. 1. (a) Device structure and (b) two-terminal conductance G
as a function ofVSG andVBG,VCH are grounded. (c)G as a function
of VCH at B ¼ 0 T keeping ðVBG; VSGÞ ¼ ð7;−4.1Þ; ð4;−2.7Þ V
[purple and orange dot in (b)]. (d)GðVCHÞ atB ¼ 0 T keepingVBG
andVSG on the blue dot in (b). (e) Transconductance as a function of
VCH and Vsd at B ¼ 0 T. (f) Extracted energy level spacings as a
function of mode number characterized by its value of quantized
conductance at various (VBG, VSG), i.e., displacement fields.
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a sequenceG ¼ 6; 8; 10; 12; 14…e2=h around B⊥ ¼ 0.5 T,
as discussed in Ref. [16]. By further increasing B⊥ the split
levels merge with neighboring ones to form fourfold
degenerate energy levels again. This occurs at B⊥¼1T.
The sequence becomes G ¼ 6; 10; 14; 18…e2=h. Overall,
the pattern bends towards positive VCH owing to the
competition between electrostatic and magnetic confine-
ment [19]. When comparing to Fig. 2(c) it becomes clear
that Zeeman-related splittings are too small to be observ-
able below 1 T. Therefore, valley splitting is observed in
Fig. 2(d), matching the scenario shown in Fig. 2(b).
Spin and valley splitting.—In order to determine the

spin and valley splittings quantitatively, we performed bias
spectroscopy at finite B. Figure 3(a) shows GðVCHÞ at
constant Bk ¼ 8T. The corresponding finite bias data is
shown in (b) for Bk ¼ 8T and in (c) for Bk ¼ 4T. Diamond-
shaped regions of suppressed transconductance are indicated
and numbered with the corresponding G value reflecting the
relevant mode. The extent of diamonds in Vsd is converted to
energy and plotted in Fig. 3(d) as a function of Bk. We
extract the g factor from linear fits with Δs ¼ gsμBB, where
μB is the Bohr magneton, g is the Lande g factor. We find
g ¼ 2.16� 0.07, as expected [18,20,21].
To investigate the bias dependence of the valley split-

tings, we apply B⊥. Figure 3(e) showsG at B⊥ ¼ 0.8 T and
VBG ¼ 4.5 V. Plateaus appear atG ¼ 6, 10, 14, 18, 22, and
26e2=h due to the strong valley splitting [compare to the
measurement in Fig. 2(d)]. In Fig. 3(f), diamondlike
features are numbered with the corresponding conductance

values. The height of the large diamonds at G ¼ 6, 10, 14,
18, 22, and 26e2=h ranges from 2–5 meV, corresponding to
the energy level difference of the valley splitting [6,16,22].
At B⊥ ¼ 0.5 T, see Fig. 3(g), energy spacings are smaller,
such that the diamonds at multiples of 2e2=h follow the
scenario in Fig. 2(b). We summarize the valley induced
energy splittings in Fig. 3(h). From the linear behavior we
extract valley g factors ranging from 50–120 according to
Δv ¼ gvμBB⊥. The gv factors at lower G are as small as
gv ¼ 40–60 and then increase and saturate at ∼100 for
large G. gv values are in agreement with results obtained in
bilayer graphene quantum dots [18].
Tunable valley splitting.—We show a summary of gv as a

function of the mode number for various VCH in Fig. 4(a).
gv increase with increasing mode number and then saturate
once the two-dimensional limit is approached. Figure 4(b)
shows the same data, but this time plotted as a function
of the gap Δ. For sufficiently large displacement fields D,
Δ ∝ D, and D are tuned by VBG (see Supplemental
Material [10]). The general tendency is that gv decreases
with increasing Δ. Especially for G ≥ 14e2=h, i.e., a QPC
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approaching the 2D limit, there is little dependence on the
conductance plateau index. Only for smallG, namely, 6 and
10e2=h, there is a substantial drop, reaching values as low
as gv ≈ 30.
Theory.—In order to obtain a theoretical understanding

of these features we have calculated the relevant properties.
The valley splitting is related to the orbital magnetic
moment M that originates from the Berry curvature [16],
given by [23]

M ¼ −ie=2ℏh∇kjΦðkÞ × ½ϵðkÞ −HðkÞ�j∇kΦðkÞi · ez:
ð1Þ

A plot of M is shown in Fig. 4(d). The maximum
magnitude of M, Mmax ¼ maxðjMjÞ, gives an upper bound
for the valley splitting. When the gap is increased, the
minivalleys are pushed apart [24] and the distribution of M
in momentum space gets broader. Mmax decreases with
increasing gap. The result of the calculation is depicted by
the dotted purple line in Fig. 4(b). It describes well the
experimental data for high mode numbers. Some exper-
imental points exceed the dotted purple line and we
speculate that this originates from small strain fluctuations
that can have a significant influence onM [25]. For smaller
mode numbers, however, when the states are more strongly
affected by the confinement potential, the shape of the
confined wave functionsΨ has to be taken into account. We
compute how much of M is picked up according to

Mred ¼
Z

MðkxÞjΨðkxÞj2dkx; ð2Þ

where ΨðkxÞ are the wave functions of the states living at
the lowest subband edge of the discrete channel spectrum
[see Fig. 4(c)]. The electronic structure of the channel is
obtained from numerical diagonalization of the BLG
Hamiltonian [26] including a continuous confinement
potential and a spatially modulated gap (akin to
Refs. [6,16]). The system parameters have been chosen
to correspond to the splittings of the lowest subbands
for the lowest modes’ energy spacings extracted from
Fig. 1 (see Supplemental Material [10]). From this calcu-
lation we obtain the brown dashed line in Fig. 4(b) which
gives a lower bound for gv, in agreement with the
experimental data.
The valley splitting in bilayer graphene is directly related

to M, which can be tuned by D. However, the valley
splitting in planar 2D bilayer graphene is difficult to access
experimentally unless one enters the quantum Hall regime.
In the experiment, this requires fields exceeding 1 T
(for more details see Ref. [16]). A quantum point contact
is a local probe that offers energy resolution and can thus
be used as a spectrometer to probe the energy spectrum.
In the limit where many modes (> 3) are occupied in the
constriction, the valley g factor can be tuned gv ∼ 40–120
by D. Calculations of the valley splitting of the 2D system
agree well with experimental results. In the limit of one
occupied mode, the wave functions are drastically modi-
fied, leading to a reduced gv, which can be accounted for in
the calculation.
The calculation of M shown in Fig. 4(d) is also valid for

bilayer graphene quantum dots [27]. However, the wave
functions in a quantum dot depend on both kx and ky.
Therefore, in order to obtain gv, a two-dimensional con-
volution with M has to be considered and Eq. (2) needs
to be modified accordingly. Still, gv will yield a similar
dependence on Δ as presented here.
Graphene quantum dots hold the promise to be a suitable

host for spin qubits because both relevant spin decoherence
mechanisms, hyperfine coupling to nuclear spins and spin-
orbit interactions, are expected to be small in carbon-based
systems. The additional valley degree of freedom can also
be used to define a qubit. While orbital degrees of freedom
(e.g., charge) usually suffer from short coherence times, it
is possible that valley qubits are long-lived, since valley
scattering requires scattering events on the atomic scale.
The experiments presented here show that the valley g
factor can be tuned by more than a factor of 2 via the
vertical displacement field. This will stimulate research to
explore valley qubits and exploit their tunability by suitably
defined nanoelectronics circuits.
Conclusion.—We performed transport measurements on

electrostatically defined quantum point contacts in bilayer
graphene. The energy resolution of the quantum point
contact enables access to the quantitative determination of
the spin and valley splitting. The valley g factor could be
tuned by about a factor of 3, from 40 to 120. By considering
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the topological orbital magnetic moment in bilayer gra-
phene and its modification by a vertical displacement field,
the tunable valley g factor can be quantitatively explained
by a band structure calculation.
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