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We consider electrical and thermal equilibration of the edgemodes of the anti-Pfaffian quantumHall state
at ν ¼ 5=2 due to tunneling of the Majorana edge mode to trapped Majorana zero modes in the bulk. Such
tunneling breaks translational invariance and allows scattering between Majorana and other edge modes in
such a way that there is a parametric difference between the length scales for equilibration of charge and heat
transport between integer and Bose mode, on the one hand, and for thermal equilibration of the Majorana
edge mode, on the other hand. We discuss a parameter regime in which this mechanism could explain the
recent observation of quantized heat transport [M. Banerjee et al., Nature (London) 559, 205 (2018)].
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Driven in part by the dream of building a quantum
computer [1], the goal of observing Majorana fermions in
condensed matter has been extremely prominent in the past
few years [2–4], with much effort devoted to finding
signatures of Majorana zero modes in charge transport.
In addition, Majorana edge modes existing at the boundary
of a topological state of matter also have a unique signature
in heat transport: they contribute one half of the thermal
conductance quantum K0 ¼ κ0T ¼ ðπ2k2B=3hÞT to the
thermal Hall conductance, qualitatively different from
integer and Abelian fractional quantum Hall states, whose
thermal conductance is quantized in integer multiples of
K0. Recently, a half-integer thermal Hall conductance was
indeed observed in the ν ¼ 5=2 quantum Hall state [5],
providing evidence for a Majorana edge mode.
The thermal Hall conductance is a universal characteristic

of a quantum Hall state, since it is independent of details of
the edge structure like disorder and interactions. For this
reason, it came as a surprise that the experimental value of
approximately 5

2
K0 differs from the theoretical value 3

2
K0 for

the anti-Pfaffian quantum Hall states, which is expected to
be realized on the ν ¼ 5=2 plateau according to exact
diagonalization in the absence of disorder [6,7]. Several
other possible candidate states do not agree with the
experimentally observed thermal Hall conductance either.
While there does exist one proposed state, the particle-hole
symmetric Pfaffian state [8], which has 5

2
K0 thermal Hall

conductance, various arguments have ruled this out for the
experiments of Ref. [5] (see the discussions in Refs. [9,10]).
The ideal topologically protected thermal Hall conduct-

ance can only be observed experimentally when all edge
channels are in thermal equilibriumwith each other, such that
their contributions add up to the universal value, assuming no
heat dissipates into the bulk [11]. If a sample is shorter than
the thermal equilibration length, then deviations from the

universal value are expected. In particular, if the Majorana
mode of the anti-Pfaffian edge is not equilibrated, a thermal
Hall conductance of 5

2
K0 in agreement with the experimental

observation is expected [9,12,13]. (In contrast, since the
Pfaffian phase of matter [14] has only copropagating edges,
7
2
K0 is predicted whether or not there is edge equilibration.)

However, under the assumption that scattering processes
leading to equilibration between edge modes are due to
charge disorder, it is unlikely that charge transport perfectly
equilibrates so as to give perfectly quantized electrical
conductance [15,16] while at the same time the Majorana
mode falls out of thermal equilibrium [9,12,13].
In this Letter, we present a different mechanism for edge

equilibration which relies on “Majorana disorder,” i.e., a
coupling between the edge Majorana mode and localized
Majorana zero modes in the bulk. In the current discussion
the disorder acts nonperturbatively to allow for a new type
of scattering process mediated by tunneling to Majorana
zero modes on trapped quasiparticles in the bulk. We
give a detailed calculation of the thermal conductance as a
function of temperature in reasonable agreement with
experiment. Thus we suggest that the anti-Pfaffian is the
only state of matter which is in agreement with the
experimental observations of Ref. [5].
Our strategy is to demonstrate the qualitatively new

Majorana disorder mechanism, but not necessarily to
precisely model the experiment—as there are many param-
eters of the experiment that are not accurately known
anyway. Nonetheless, we will show that for not too
unreasonable parameters we can roughly describe the
experiment. We will later relax some of our assumptions
and suggest that our mechanism may be more general.
For a translationally invariant edge, the edgemodes of the

anti-Pfaffian comprise three (downstream) integer quantum
Hall edge modes, an upstream (reverse-running) bosonic
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edge mode, and an upstream (reverse-running) Majorana
edge mode [17,18] (see Fig. 1, inset). As emphasized in
Ref. [12], one typically expects a momentum mismatch
between different edge modes, so that tunneling of an
electron between edge modes requires a change in momen-
tum. Previous discussions have assumed that such a
momentum change is provided by charge disorder
[9,12,13]. For the moment, we will assume that charge
disorder is weak such that translational symmetry breaking
can be neglected (i.e., we assume a clean edge). While this
seems like a rather strong assumption, we will later discuss
how essentially the same physics can apply even in the
presence of charge disorder.
We thus start by considering a translationally invariant

edge potential. Without disorder one might expect neither
electrical nor thermal equilibration between edge modes.
However, in the bulk there should be trapped quasiparticles
or quasiholes near the edge—each one harboring a
Majorana zero mode. In the absence of disorder these
particles will form some sort of Wigner crystal (or glass)
minimizing their energies with the background potential as
well as minimizing their interaction energies with each
other. Let us assume that some of these quasiparticle
locations are not too far from the edge. We also assume
that the Coulomb energy is large enough so that the trapped
quasiparticles do not change their positions.
Generically, there will be coupling of the trapped

Majorana zero mode to the Majorana edge mode, as shown
in Fig. 1, inset. Such coupling of the edge to a trapped

Majorana has been analyzed in a number of different
contexts before [19–23]. The result of such a coupling is
to produce an energy dependent scattering phase shift to the
edge Majorana of the following form,

eiφðEÞ ¼ Eþ iEcoupling

E − iEcoupling
; ð1Þ

where Ecoupling is the (temperature independent) strength of
the coupling between the trapped Majorana mode and the
edge (see Supplemental Material, Sec. III, for derivation
[24]). This is analogous to the phase shift of an electronic
level coupled to a continuum [25]—except that here Emust
be positive since we have Majoranas.
The key here is to realize that at energies high compared

to the coupling energy, the Majorana edge mode is
undisturbed by its coupling to the trapped mode (φ is
close to zero). However, at low energies compared to the
coupling energy, the Majorana mode is maximally phase
shifted by an angle of π. In particular, for an edge Majorana
with wave vector k, such that E ¼ v0k ≪ Ecoupling, with v0
the Majorana mode velocity, the wave function takes the
form eikx for x < x0 and −eikx for x > 0. This function has
Fourier modes ∼eiðq−kÞx0=ðq − kÞ, allowing overlap of this
Majorana edge mode with other edge modes even with
substantial momentum mismatch. Thus, we should expect
there should be scattering into the Majorana edge mode at
energies less than Ecoupling but not at energies much greater
than Ecoupling.
Suppose further that the coupling energy happens to be

somewhat smaller than the temperature. In this case we
have a mechanism by which scattering of charge occurs
only when the energy of the Majorana is sufficiently low,
thus keeping the heat from being transferred to the
Majorana mode—potentially achieving charge equilibra-
tion without thermal equilibration.
Let us now be more precise about the details of the

scattering model we solve. We consider scattering to a
single integer mode (1↑ in Fig. 1) which we write using
fermionic fields fψðxÞ;ψ†ðx0Þg ¼ δðx − x0Þ. The Majorana
edge mode is ξ0, and we will use a convenient representa-
tion [17,18,26] of the Bose mode in terms of two Majorana
operators ξ1 and ξ2. These Majorana fields are self-
conjugate ξ†α ¼ ξα and have fermionic anticommutations
fξαðxÞ; ξβðx0Þg ¼ δαβδðx − x0Þ. The Hamiltonian of the
edges is then given by

H0 ¼ i
Z

dx
�
viψ†ðxÞ∂xψðxÞ þ

X
α¼0;1;2

vα
2
ξαðxÞ∂xξαðxÞ

�
;

ð2Þ

where vi < 0 is the integer mode velocity, v0 > 0 is the
Majorana ξ0 velocity, and v1 ¼ v2 ¼ vb > 0 is the Bose
velocity. In the presence of large disorder scattering,

FIG. 1. Thermal conductance as a function of temperature.
Points are experimental data from Ref. [5]. Red, green, and blue
points are ν ¼ 2.50, 2.49, 2.51, respectively. The dashed curve is
the Ecoupling → 0 limit while keeping finite A ¼ 1=mK. The solid
curve is Eq. (8) given in the text with A ¼ 0.4=mK and
Ecoupling ¼ 4 mK. For both curves the only scattering mechanism
considered is the Majorana disorder, showing the robustness of
the mechanism to detailed parameters. Inset: Proposed model of
anti-Pfaffian edge. Three integer edge modes (solid) flow down-
stream, 0↑, 0↓, and 1↑. A Bose edge mode (long dashes) and a
Majorana edge mode (short dashes) flow upstream. A trapped
Majorana zero mode (marked x) is coupled (dots) to the Majorana
edge mode.
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Refs. [17,18] consider a fixed point where v0 ¼ v1 ¼ v2.
However, here we are assuming low disorder limit and
generally we expect that the Majorana velocity v0 is
somewhat less [27] than the Bose or integer velocities
vb and vi. On the right-hand side we assume a reservoir at
temperature T and voltage 0; on the left we assume
reservoir with temperature T þ ΔT and voltage V.
In addition, we add an interaction induced scattering

term to allow an electron to scatter from the integer to the
fractional edges. This is of the form

H1 ¼ α

Z
dxeipxψ†ðxÞξ0ðxÞξ1ðxÞξ2ðxÞ þ H:c:; ð3Þ

where α is a coupling constant with dimensions of velocity
which should be roughly on the order of the edge mode
velocity (to be detailed below and in the Supplemental
Material [24]), and p is the wave vector mismatch between
the integer and fractional modes (assumed to be on the order
of the inverse magnetic length). Here the electron in the
fractional edges is made of a product of the threeMajoranas.
In the absence of additional disorder, due to the wave vector
mismatch p, there can be no scattering at low voltage and
low temperature difference between the edge modes.
Finally, we add the single Majorana impurity γqp zero

mode (γ2qp ¼ 1 and fγqp; ξjðxÞg ¼ 0Þ, via the Hamiltonian

H2 ¼ iλγqpξ0ðx0Þ; ð4Þ
where x0 is the position of the coupling, and λ is the
coupling constant. If we start by ignoring the Bose and
integer mode, it is easy to show that the phase shift to the ξ0
mode due to the coupling H2 is given by Eq. (1), where
Ecoupling ¼ λ2=v0 (see Supplemental Material, Sec. III, for
detailed derivation [24]).
We now calculate the tunneling current between the

integer and fractional edges. See Supplemental Material,
Sec. I, for details [24]. We use Fermi’s golden rule to
describe the tunneling of an electron between edges. The
complexity comes from the fact that the electron is
fractionalized between Bose and Majorana modes. The
tunneling current through the impurity is [28]

Jα ∼
Z

dx
Z

dx0
Z

dEXα

× ½eipðx−x0ÞGL
<ðE; x0; xÞGR

>ðEþ eV; x0; xÞ
− e−ipðx−x0ÞGL

>ðE; x0; xÞGR
<ðEþ eV; x0xÞ�; ð5Þ

where α ¼ e or E (for charge current or energy
current), Xe ¼ −e and XE ¼ E with p the momentum
mismatch between the right- and left-moving edges,
and V the voltage difference. On the left-moving
integer edge, GL

>;<ðE; x0; xÞ ∼ e�iðE=viÞðx−x0ÞnFð∓ EÞ,
where nFðEÞ ¼ 1=ð1þ eβEÞ denotes the Fermi dis-
tribution, and β ¼ 1=kBT. The right-moving electron

Green’s function can be expressed as a convolution
of Bose and Majorana Green’s functions GR

>;<ðE;x;x0Þ∼R
dE0Gb

>;<ðE−E0;x0;xÞGξ
>;<ðE0;x0;xÞ. Here, Gb

>;<ðE;x;x0Þ∼
∓EnBð∓EÞe∓iðE=vbÞðx−x0Þ. The Majorana Green’s function
in the absence of the impurity is Gξ;0

>;<ðE; x; x0Þ∼
nFð∓ EÞe∓iðE=v0Þðx−x0Þ. In the presence of an impurity,
the Majorana Green’s function is given byGξ

>;<ðE; x; x0Þ ¼
Gξ0

>;<ðE; x; x0ÞFðE; x; x0Þ with a phase shift FðE; x; x0Þ from
the impurity at position x0 given by FðE; x; x0Þ ¼ eiφðEÞ for
x > x0 > x0 or FðE; x; x0Þ ¼ e−iφðEÞ for x < x0 < x0 and
FðE; x; x0Þ ¼ 1 otherwise, where φðEÞ is given by Eq. (1).
Evaluating the tunneling current Eq. (5) using the above

Green’s functions (see Supplemental Material, Sec. I [24]),
we obtain results in line with the expectations described
earlier. We can easily examine the limit of very weak
coupling Ecoupling with the assumption that the wave vector
mismatch p between the Bose mode and the integer mode
is larger than T=v0. In this limit the electrical conductance
from the integer to fractional (combination of Bose and
Majorana) modes is given by

G ¼ πjαj2EcouplingT

8jvijv2bv0p2
G0; ð6Þ

with G0 ¼ e2=h. The thermal conductance in this limit is
more complicated since the three edge modes can have
three different temperatures. We find the corresponding
thermal conductances to be

Kib ¼ ðkB=eÞ2ðπ2=2ÞTG;
Kim ¼ ϵKib;

Kbm ¼ 2ϵKib;

ϵ ¼ ½32=ð9π3Þ�Ecoupling=T ≈ 0.1Ecoupling=T; ð7Þ
where i, b, and m indicate the integer, Bose, and Majorana
edge modes. (For example, the thermal current between the
integer and Bose mode is Kib times the temperature
difference between these two modes.) There are no
thermoelectric couplings due to the particle-hole symmetry
of the model [29], and the influence of Joule heating on
edge temperature and shot noise [30] is neglected due to the
leading order expansion in the tunnel coupling α.
Assuming the coupling Ecoupling is sufficiently smaller

than T, the parameter ϵ will be small and the thermal
conductance into the Majorana modewill be much less than
that into the Bose mode. Thus one should have a regime
where there is electrical equilibration, and the Bose mode is
fully thermally equilibrated, but the Majorana mode is not.
Inclusion of Coulomb interaction between the integer and
Bose mode may change the linear temperature dependence
in Eq. (6) to T2Δ−3 (via a change in the scaling dimension of
the tunneling operator [18]). In the absence of intermode
Coulomb coupling, Δ ¼ 2, and for sufficiently strong
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Coulomb coupling, Δ < 3=2 causes a phase transition to a
random fixed point with perfect equilibration in the low
temperature limit [18]. Since in the experiment [5] equili-
bration gets worse with lower temperature, we conclude
Δ > 3=2 and the result Eq. (6) for Δ ¼ 2 is representative
for the nonrandom fixed point. In addition, crucially, Kib

will still be given by Eq. (7) up to order unity constant, and
Kim and Kbm will still be suppressed a factor of ϵ.
Let us assume that heat is not flowing into the Majorana

mode. If we further assume that the 1↑ integer mode does
not mix with the other integer edge modes, then this mode
along with the Bose mode form a system of two counter-
propagating edges similar to the case of Refs. [15,16].
In such cases thermal equilibration is diffusive, and the
system may not fully equilibrate. This physics is certainly
seen in experiment [31] at ν ¼ 2=3, and, as pointed out in
Ref. [13], is likely also occurring in experiment [5] at
ν ¼ 2þ 2=3 with a similar assumption that the outer two
integer edge modes are not mixing with the other modes.
Since the conductances are dropping proportional to T at
low temperature, we should expect that equilibration
should be particularly bad at low temperature. Should
the Bose mode go out of thermal equilibrium with the
integer mode, the measured thermal conductance should
rise [9], which is precisely what is observed in experiment.
The conductances and thermal conductances calculated

so far are conductances between edge modes through a
single scattering center. The electrical conductance between
edge modes per unit length is given by G̃ ¼ nimpG, where
nimp is the number of scatterers per unit length. We can
define a characteristic charge equilibration length
lb
e ¼ G0=G̃. To determine the total electrical conductance

along the edge we use the relationship between current and
chemical potential being given by jα ¼ Gαδμα, with Gi ¼
G0 andGb ¼ G0=2. We then include scattering between the
two edges via ∂xji;b ¼ �G̃ðδμi − δμbÞ. The solutions of
these equations show us that corrections to the quantized
electrical conductancewill be order e−L=l

b
e withL the length

of the edge. (See Supplemental Material, Sec. IV [24].)
Since the electrical conductance is well quantized, we must
assume that L=lb

e ≫ 1.
Similarly to the electrical case, the thermal conductances

per unit length between edge modes α; β ∈ fi; b;mg are
given by K̃αβ ¼ nimpKαβ giving a characteristic thermal
length for equilibrating the Bose and integer modes given
by lb

q ¼ K0=K̃ib ¼ 2lbe=3, with K0 ¼ ðπ2=3ÞTk2B=h. The
thermal current along an edge is given by Jα ¼ cαK0δTα,
where α ¼ fi; b;mg and cα ¼ ð−1; 1; 1=2Þ is the signed
central charge of the different edge modes. We then include
scattering between edges via ∂xJα ¼ −

P
β K̃

αβδTβ, with
K̃αα defined to give energy conservation

P
β K̃

αβ ¼ 0.
Because we have counterpropagating modes [15,16,31,32],
as in the case of ν ¼ 2=3, corrections to the measured
quantized thermal conductance will be algebraic. The

solution of this system of equations (detailed in
Supplemental Material, Sec. IV. B [24]) gives us the net
thermal conductance of the edge (including 2K0 from the
lowest Landau level edges),

K=K0 ¼ 2.5þ 2

1þ AT
− ϵCðATÞ; ð8Þ

where A ¼ L=ðlbqTÞ is a temperature independent constant
and where ϵ ¼ ½32=ð9π3Þ�ðEcoupling=TÞ is the above-dis-
cussed small parameter which we can approximate as zero
if theMajoranamode is decoupled from the integer and Bose
modes. For x ≫ 1, we haveCðxÞ ≈ x. We expect the thermal
equilibration length for the Majorana mode to scale as lBq=ϵ,
which can be much longer than the length of the sample.
In Fig. 1 we show example results of this theory

compared against experimental data from Ref. [5]. The
two curves have values of A fit to the data given a fixed
value of Ecoupling ¼ 0 or 4 mK, showing that the curve
shape is relatively independent of Ecoupling. For all plotted
values of T we have L=lbq ¼ ð2=3ÞðL=lcqÞ substantially
greater than 1. Thus the measured electrical conductivity
will be well quantized.
One possible concern with our model is that the coupling

H2 between the isolated quasiparticle and the edge is
assumed to occur at one point x0. The fact that it is a point
coupling is responsible for the appearance of arbitrarily
large Fourier modes being active. More realistically, the
coupling will be smeared out somewhat. The tunneling
from a Majorana impurity to the edge should be exponen-
tial with some decay length ζ. If the impurity is a
perpendicular distance R from the edge, then the smearing
of the coupling along the edge should be roughly
∼ expð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ x2

p
=ζÞ ≈ e−R=ζe−x

2=ð2RζÞ, with x the dis-
tance along the edge, giving a smearing over a length
scale on order w ≈

ffiffiffiffiffiffi
Rζ

p
, preventing the above-described

scattering mechanism from being effective if the wave
vector mismatch is p≳ w−1. We can use an estimate of
ζ ≈ 1.15lB from prior numerical work [24,33], so that we
also have Ecoupling ≈ 1Ke−R=ζ. Given that we want Ecoupling

in the mK range, we estimate R ≈ 6lB, thus bounding
p≲ 0.3=lB. See Supplemental Material, Sec. III. A, for
more details [24].
We now relax our prior assumption that there is no

charge disorder along the edge. In the presence of charge
disorder, if the disorder wavelength is not as large as the
momentum mismatch p of the edges, then scattering can
not occur due to this disorder wave vector alone. However,
one can consider a situation where scattering can occur if
the Majorana impurity mechanism provides some of the
momentum and the disorder provides the remainder. A
detailed calculation of this more complicated mechanism is
beyond the scope of this work, but we expect that very
similar physics will result.
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We now turn to the physical parameters which will give us
this desired value of A ¼ ð3π=16Þjαj2EcouplingnimpL=
ðjvijv2bv0p2Þ ≈ 0.4=mK used in Fig. 1 (we need A to be
not too much less than 0.4/mK so that the electrical
conductivity is well quantized at experimental temperatures).
Let us assume the following reasonable parameters: velocity
vi ¼ vb ¼ 106 cm= sec for the integer and Bose modes and
v0 ¼ 105 cm= sec for theMajorana edgemode. The coupling
constant α also has dimensions of velocity and should be
roughly on the same scale. In the Supplemental Material we
detail why an estimate of this parameter should be given by
α2 ¼ π2vb

ffiffiffiffiffiffiffiffiffi
vbv0

p
[24]. We take p ¼ 0.1=lB, and in the

experiment lB ¼ 16 nm and L ¼ 150 μm. Finally, we
choose Ecoupling to be 4 mK ≪ T as given in Fig. 1. In order
to have A ≈ 0.4=mK this would require one impurity every
120 nm ≈ 8lB. Note in addition that A scales as the inverse
square of bothp and thevelocities, so that a small reduction in
either would allow a much lower density of impurities. We
emphasize that there have been no detailed simulations of the
anti-Pfaffian edge, and it is possible that the edge potential is
strongly screened by the outer edge modes resulting in edge
velocities being somewhat smaller than in outer edge modes.
To summarize, we have provided a detailed mechanism

that potentially explains the observation of the K=K0 ≈ 2.5
from Ref. [5], by showing how the Majorana edge mode
can remain out of thermal equilibrium, despite the fact that
all of the edge modes are in electrical equilibrium. Further,
we show how the same mechanism can roughly explain the
temperature dependence of the experimental data.
In compliance with EPSRC policy framework on

research data, this publication is theoretical work that does
not require supporting research data.
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