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We point out that the choice of phases in Gliozzi-Scherk-Olive projections can be accounted for by a
choice of fermionic symmetry-protected topological phases on the world sheet of the string. This point of
view not only easily explains why there are essentially two type II theories, but also predicts that there are
unoriented type 0 theories labeled by n mod 8 and that there is an essentially unique choice of the type I
world sheet theory. We also discuss the relationship between this point of view and the K-theoretic
classification of D-branes.
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Introduction.—The most traditional method of studying
superstring theory is via superstring perturbation theory. In
the NS-R formalism, one starts with a world sheet theory
which contains world sheet spinors which are spacetime
vectors. Then, the theory is subjected to a process known as
the Gliozzi-Scherk-Olive (GSO) projection [1,2]. It is well
known that there are various possible choices of consistent
GSO projections. In the standard textbook presentation,
e.g., in [3], allowed GSO projections are determined by
imposing various consistency conditions, such as the
modular invariance of torus amplitudes. That the GSO
projections give consistent results in higher genus ampli-
tudes is not immediately clear in this presentation.
A formulation which works equally well for higher

genera was found in [4]. There, it was pointed out that the
GSO projection is a summation over the spin structure of
the world sheet and that different GSO projections corre-
spond to different possible phases assigned to spin struc-
tures in a way compatible with the cutting and the gluing of
the world sheet. In particular, it was found there that the
different signs appearing in type IIA and type IIB GSO
projections are given by an invariant of the spin structure
known as the Arf invariant. The Arf invariant is of order 2,
which is closely related to the fact that there are only two
type II theories.
Thanks to the developments initiated in condensed

matter physics in the last decade, we now have a more
physical understanding of this Arf invariant. Namely, it is
the partition function of the low-energy limit of the 1þ 1d

symmetry-protected topological (SPT) phase known as the
Kitaev chain [5]. In general, the low-energy limit of a SPT
phase is known as an invertible phase [6,7] and its partition
function on a closed manifold is a phase (in the sense of a
complex number of absolute value one) which behaves
consistently under the cutting and gluing of the spacetime
manifold. Conversely, it is now known that any such
consistently assigned phase is given by the partition function
of an invertible theory. Furthermore, there is now a general
classification of possible invertible phases, or equivalently
SPT phases, in terms of bordism groups [7–9].
This means that, with the technology currently available

to us, we can now not only understand the consistency of a
given GSO projection, but also enumerate all possible GSO
projections. The aim of this Letter is to revisit known GSO
projections from a modern viewpoint, and possibly find
new ones. Note that we will restrict ourselves to projections
which treat all fermions in the same manner—more general
projections, which necessarily break spacetime Lorentz
invariance, would be interesting to study.
For example, the Kitaev chain is known to be compatible

with a parity transformationΩ such thatΩ2 ¼ ð−1ÞF. Also,
it is known that eight copies of the Kitaev chain protected
by this symmetry are continuously connected to a com-
pletely trivial theory [10]. In this case, the partition function
of the low-energy limit of the Kitaev chain is known as the
Arf-Brown-Kervaire (ABK) invariant, and is of order 8.
Now, let us consider an unoriented NS-R word sheet theory
with Ω2 ¼ ð−1ÞF. Such a world sheet is said to have a pin−
structure, which is a generalization of the concept of a spin
structure to unoriented manifolds (see, e.g., Appendix A of
[11] for an introduction). When we perform the GSO
projection, or equivalently, when we sum over the pin−

structures, we can now include n copies of the ABK
invariant. This leads to a series of unoriented type 0 string
theories, labeled by n mod 8. Some of these theories have
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been discussed in the existing literature [12–21], but our
unified description is new.
We can also ask whether it is possible to modify the GSO

projection of the type I theory. In the type II theory, the left-
and right-moving fermions couple to independent spin
structures. This means that the world sheet fermions of the
type I theory have neither pinþ nor pin− structure; rather,
one needs to consider the spin structure on the orientation
double cover of the world sheet [20,21]. We will see below
that there are nontrivial invertible phases for this structure,
but that they will not lead to any genuinely new type I
theory.
We also point out that our viewpoint provides a com-

plementary way to understand the dependence of the K-
theoretic classification of D-branes [22] on the choice of the
GSO projection. For example, two type II theories differ by
the presence of the Arf invariant or, equivalently, the Kitaev
chain on the world sheet. Famously, the Kitaev chain has an
unpaired fermionic zero mode on its boundary. This
explains the fact that the boundary condition for the type
IIA non-BPS D9-brane has an unpaired boundary fermion
as originally observed in [23]. Mathematically, the presence
of n boundary fermions corresponds to the existence of the
action of the Clifford algebra ClðnÞ, and theK groupKnðXÞ
is defined in terms of unitary bundles with a specified
action of ClðnÞ [24]. With this observation, we see that the
type IIB and type IIA theories have D-branes classified by
K0ðXÞ and K1ðXÞ, respectively.
Similarly, when we have n copies of the ABK invariant,

we have n boundary fermions, leading to the existence of
the action of the Clifford algebra Clð�nÞ. This means that
the unoriented pin− type 0 theory labeled by n mod 8 has
D-branes classified by KOþnðXÞ ⊕ KO−nðXÞ.
In the rest of the Letter, we will give more details on the

points briefly summarized above. We will work in the
lightcone gauge in the NS-R formulation. A longer version
of this Letter, filling in many of the details, is forthcoming.
Type II strings.—Let us start with the type II string

theory. We have eight left-moving fermions ψ i
L and eight

right-moving fermions ψ i
R, i ¼ 1;…; 8. We allow for

independent spin structures for the left and right movers.
As the difference between two spin structures is a Z2 gauge
field, we can equivalently say that we have a spin structure
and a Z2 gauge field. The chiral GSO projection for the
type II theories corresponds to the sum over the left- and
right-moving spin structures on the world sheet.
In general, the global anomaly of a D-dimensional

fermionic system with symmetry G is controlled by
℧Dþ1

Spin ðBGÞ ≔ Hom½ΩSpin
Dþ1ðBGÞ; Uð1Þ�, and the possible

fermionic SPT phases with symmetry G in D dimensions
are classified by℧D

SpinðBGÞ. Here,ΩSpin
d ðBGÞ is the bordism

group of d-dimensional spinmanifolds with aG bundle, and
℧d

SpinðBGÞ is its Pontryagin dual.BG denotes the classifying
space ofG. The case relevant for us hasG ¼ Z2 andD ¼ 2,

forwhich the groups are given inTable I. (Wenote that, in the
physics literature, our ℧d

SpinðBGÞ is often denoted by

Ωd
SpinðBGÞ, but this symbol signifies something different

known as bordism cohomology for mathematicians, and the
authors would like to avoid it.)
We see that the anomaly is characterized by℧3

SpinðBZ2Þ¼
Z8. A single Majorana fermion coupled to two spin
structures is known to have an anomaly which is a generator
of this Z8, and, as pointed out in [26], the chiral GSO
projection is nonanomalous thanks to the fact that we have
10 − 2 ¼ 8 Majorana fermions.
The SPT phases that we can add to the world sheet are

classified by ℧2
SpinðBZ2Þ ¼ Z2

2, and their partition func-
tions are given by

ð−1ÞnLArfðσLÞþnRArfðσRÞ; ð1Þ

where σLðRÞ is the left(right)-moving spin structure, ArfðσÞ
is the mod-2 Arf invariant, and nLðRÞ ¼ 0, 1 label the four
choices. As discussed above, they correspond to four
distinct GSO projections possible in type II theories.
Then, we need to explain why we usually only talk about

two type II theories. For this purpose, we recall that the Arf
invariant is the low-energy limit of the Kitaev chain [8]. In
the language of continuum field theory, this corresponds to
the definition [11]

eiπArfðσÞ ¼ Zfermðm ≫ 0; σÞ=Zfermðm ≪ 0; σÞ; ð2Þ

where Zfermðm; σÞ is the partition function of a free massive
Majorana fermion of mass m; both ψL;R necessarily couple
to the same spin structure σ ≔ σR ¼ σL. The low-energy
limit is taken by sending jmj → ∞, and the denominator is
the contribution from a Pauli-Villars regulator.
In fact this formula holds at finite mass

eiπArfðσÞ ¼ Zfermðþm; σÞ=Zfermð−m; σÞ: ð3Þ

We further recall that the flip of the sign of the mass term,
m → −m, can be performed by ðψL;ψRÞ → ðψL;−ψRÞ.
Taking the limit m → 0, we find that a Majorana-Weyl
fermion ψR has an anomaly under ψR → −ψR, and gen-
erates ð−1ÞArfðσRÞ.
This means that the parity transformation along a single

spacetime direction, say ðψ i¼8
L ;ψ i¼8

R Þ → ð−ψ i¼8
L ;−ψ i¼8

R Þ,
produces ð−1ÞArfðσLÞþArfðσRÞ, i.e., nL ¼ nR ¼ 1 in (1).

TABLE I. Groups of SPT phases relevant to our analysis. The
first four columns are classic [8,25]. The last column is new.

d ℧d
SpinðptÞ ℧d

SpinðBZ2Þ ℧d
Pin−ðptÞ ℧d

PinþðptÞ ℧d
DPinðptÞ

2 Z2 Z2
2

Z8 Z2 Z2
2

3 0 Z8 0 Z2 Z8
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Therefore, there are only essentially two distinct type II
GSO projections. The cases ðnL; nRÞ ¼ ð0; 0Þ; ð1; 1Þ are
called type IIB and the cases ðnL; nRÞ ¼ ð0; 1Þ; ð1; 0Þ are
called type IIA.
This also explains why T duality exchanges type IIA

and type IIB: T duality along a spacetime direction
implements ð∂XR;ψRÞ → ð−∂XR;−ψRÞ while keeping
ð∂XL;ψLÞ fixed. This generates ð−1ÞArfðσRÞ, thus, exchang-
ing type IIB and type IIA.
We also note that the Kitaev chain has an unpaired

Majorana fermion at its boundary. This explains the fact
that the boundary condition for the type IIA D9-brane has
one boundary fermion [23]. The fact that the type IIA D-
branes are classified by K1ðXÞ while the type IIB D-branes
are classified by K0ðXÞ can also be explained from this
point of view. We will discuss this in the context of
unoriented pin− type 0 strings below.
Oriented type 0 strings.—Next, let us consider oriented

type 0 strings, obtained via diagonal GSO projections
[4,27]. Here, we assign the same spin structure to both
left- and right-moving fermions and, then, sum over this
spin structure. The anomaly is controlled by ℧3

SpinðptÞ and
the invertible phases we can add on the world sheet are
classified by ℧2

SpinðptÞ. Here, pt means the absence of any
additional symmetry.
A quick inspection of Table I shows that there is no

anomaly to talk about, and there are two choices of the
invertible phase, or equivalently, two choices of GSO
projection. The invertible phases are simply given by
ð−1ÞnArfðσÞ where n ¼ 0, 1. The case n ¼ 0 is the oriented
type 0B string and the case n ¼ 1 is the oriented type 0A
string.
Compared to type II strings, there is a closed string

tachyon in the NSNS sector, and the RR sector is doubled:
the type 0B string has two C, two Cμν, and one nonchiral
Cμνρσ while the type 0A string has two Cμ and two Cμνρ.
Correspondingly, the D-brane spectra are also doubled, and
are classified by K0ðXÞ ⊕ K0ðXÞ and K1ðXÞ ⊕ K1ðXÞ,
respectively.
Unoriented pin− type 0 strings.—Now, let us move on to

a discussion of unoriented versions of type 0 strings. On
unoriented (Wick-rotated) d-dimensional spacetime, fer-
mions transform under a double cover of OðdÞ. There are
two distinct choices known as Pin�ðdÞ, distinguished by
Ω2 ¼ ð�1ÞF where Ω is a lift of the parity transformation
along a single direction. In our context, this distinction
manifests itself, for example, in the spin structure along the
boundary of a Möbius strip. Going around this boundary is
homotopically equivalent to going twice around the unor-
ientable cycle around the cross cap and, thus, involves Ω2.
Therefore, it is automatically in the NS sector with pin−

structure, and in the R sector with pinþ structure.
First, we discuss the pin− case. The system is automati-

cally anomaly free since ℧3
Pin−ðptÞ ¼ 0. Then, we have the

choice of invertible phases on the world sheet, given by
℧2

Pin−ðptÞ ¼ Z8. These invertible phases have been studied
previously in [8,28,29], and in the condensed matter
literature in [10,30,31]. The partition functions are given by

eð2πi=8ÞnABKðσÞ; ð4Þ
where n is an integer modulo 8, and we have ABKðσÞ ¼
�1 on RP2. The ABK invariant admits a physical defi-
nition in terms of massive fermion partition functions, of
the same form as for the Arf invariant (2) but for a system
with time-reversal symmetry. As a result of the Dai-Freed
theorem [32], it can also be expressed naturally in terms of
the η-invariant familiar from index theory [11]. Note that,
with n ¼ 4, eð2πi=8ÞnABKðσÞ assigns the phase −1 to RP2

and, thus, maps O9− to O9þ. More mathematically, this
means that

eð2πi=8Þ4ABKðσÞ ¼ ð−1Þ
R

w2
1 ; ð5Þ

where w1 is the first Stiefel-Whitney class of the manifold,
measuring the nonorientability. Theories differing by four
copies of ABK differ by this same phase in the partition
function.
We also note the following: on oriented surfaces,

ABKðσÞ ¼ 4ArfðσÞ modulo 8, which means that the cases
n ¼ 0, 2, 4, 6 are orientifolds of type 0B and the cases
n ¼ 1, 3, 5, 7 are of type 0A. The fact that type 0A and 0B
theories split into four cases each when we consider
unoriented theories was also mentioned in Appendix F
of a recent paper [33].
The Klein bottle admits four pin− structures, and is

obtained by gluing together two copies of RP2. As such,
the ABK invariants are ð�1Þ þ ð�1Þ ¼ −2; 0; 0;þ2. The
Klein bottle amplitude is a trace of Ω on the closed-string
Hilbert space, and the cases where ABKðσÞ ¼ �2 corre-
spond to the trace of Ω in the RR sector, while those with
ABKðσÞ ¼ 0 correspond to the trace in the NSNS sector.
Therefore, including the phase (4) in the GSO projection
only modifies the action ofΩ in the RR sector, and we have

ΩðnÞ
RR ¼ Ωð0Þ

RRe
ð2πi=4Þn: ð6Þ

We find that the NSNS sector contains the tachyon, the
metric, and the dilaton independent of n. In the RR sector,
one has

Cμν; C0
μν ðn ¼ 0; 4Þ;

Cμ; Cμνρ ðn ¼ 1; 5Þ;
C; C0; Cμνρσ ðn ¼ 2; 6Þ;
Cμ; Cμνρ ðn ¼ 3; 7Þ; ð7Þ

where Cμνρσ is a nonchiral four form. Correspondingly, we
can find the following nontorsion D-branes using the
standard boundary state formalism
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D1; D10; D5; D50; D9; D90 ðn ¼ 0; 4Þ;
D0; D2; D4; D6; D8 ðn ¼ 1; 5Þ;
Dð−1Þ; Dð−1Þ0; D3; D30; D7; D70 ðn ¼ 2; 6Þ;
D0; D2; D4; D6; D8 ðn ¼ 3; 7Þ: ð8Þ

These nontorsion D-branes match the K-theoretic classi-
fication given by KOþnðXÞ ⊕ KO−nðXÞ. This K-theoretic
classification of D-branes can also be interpreted as
follows.
Let us consider a system of n copies of the Kitaev chain.

When put on a segment, it has n fermion zero modes ψa
L on

the left boundary and another n fermion zero mode ψa
R on

the right boundary, a ¼ 1;…; n. When we assign the T
transformation Tψa

L ¼ þψa
L and Tψa

R ¼ þψa
R, the anti-

commutators are fψa
L;ψ

b
Lg ¼ þ2δab and fψa

R;ψ
b
Rg ¼

−2δab [10,11]. The algebra fψa;ψbg ¼ �δab with a; b ¼
1;…; n is known as the Clifford algebra Clð�nÞ. This
means that, when n copies of the ABK invariant
are introduced, there are two types of boundaries, one
carrying the action of ClðþnÞ and another carrying the
action of Clð−nÞ. Now, the group KOnðXÞ is defined in
terms of orthogonal bundles with an additional action of
ClðnÞ [24]. Therefore, the D-branes in the unoriented pin−

type 0 string specified by n mod 8 are classified
by KOþnðXÞ ⊕ KO−nðXÞ.
Unoriented pinþ type 0 strings.—Let us briefly mention

the pinþ case, which has been studied previously under the
name type 0’ strings [19,34,35]. Here, the anomaly is
characterized by ℧3

PinþðptÞ ¼ Z2. As we have eight fer-
mions, the GSO projection is anomaly free. Then, the
invertible phases on the world sheet are classified by
℧2

PinþðptÞ ¼ Z2. It is known that the invertible phases are
given by

ð−1ÞnArfðσ̂Þ; n ¼ 0; 1; ð9Þ
where σ̂ is the spin structure of the orientation double
cover of the world sheet. When orientable, Arfðσ̂Þ ¼
ArfðσLÞ þ ArfðσRÞ. This can be generated by the space-
time parity transformation along a single direction as we
already discussed, and therefore, there is only an essen-
tially unique way to perform the GSO projection. This
GSO projection removes the closed string tachyon and
has an interesting Green-Schwarz cancellation, but we do
not have anything to add to the discussions given in the
references cited above.
Type I string.—Now, we study the possibility of a new

GSO projection for the type I string. It will turn out that
there is no new possibility.
In order to explain this, we need to study the spin

structure of the orientation double cover. Our main interest
here is the world sheet, which is two dimensional, but
to formulate the bordism group it is useful to work in

arbitrary dimensions. Let us, then, consider (Wick-rotated)
n-dimensional manifolds. When the manifold is oriented,
the spin structure of the orientation double cover corre-
sponds to considering SpinðnÞ × Z2, which is a double
cover of SOðnÞ × Z2. Therefore, when the manifold is
unoriented, we need to consider a double cover

0 → Z2 → G → OðnÞ × Z2 → 0: ð10Þ

The precise extension is specified by an element of
H2(BOðnÞ × BZ2;Z2) and is given by w2 þ w2

1 þ w1a,
where w1;2 are the usual Stiefel-Whitney classes of OðnÞ
and a is the generator ofH1ðBZ2;Z2Þ ¼ Z2. We can check
that this group G contains SpinðnÞ × Z2 as it should,
and also contains both PinþðnÞ and Pin−ðnÞ. This is, in
some sense, a double Pin group, and we denote it by
G ¼ DPinðnÞ.
We need to find ℧2;3

DPinðptÞ. This can be computed using
the Atiyah-Hirzebruch spectral sequence for twisted spin
bordism groups, using the information on the differential d2
recently found in [36]. The result is shown in Table I; we
will detail the computations in the upcoming full paper. The
GSO projection is anomaly free, since℧3

DPinðptÞ ¼ Z8, and
we have eight fermions. The invertible phases on the world
sheet are classified by ℧2

DPinðptÞ ¼ Z2
2, whose generators

are simply

ð−1Þ
R

w2
1 ; ð−1ÞArfðσ̂Þ: ð11Þ

We already noted in (5) that ð−1Þ
R

w2
1 simply exchanges

O9�. We also already saw that ð−1ÞArfðσ̂Þ can be generated
by a spacetime parity transformation along a single
direction and, therefore, does not lead to an essentially
different GSO projection. Hence, one obtains only the usual
type I and Ĩ strings.
Conclusion.—Topological phases first developed in con-

densed matter physics have come to play an increasingly
prominent role in the study of the dynamics of continuum
quantum field theory, largely through their connection to
anomalies. In this Letter, we have shown that the recent
insights into such phases can also be connected to tradi-
tional results about the classification of string world sheet
theories. Looking forward, we expect that this connection
will prove useful to the study of other aspects of string
theory, including orbifolds, heterotic strings, and compac-
tifications. Of particular interest would be understanding
the implications of these methods for string model building.
We hope to explore some of these applications in the future.
We also hope that this fruitful interplay between condensed
matter and string theory will be taken in the other direction,
using traditional string results to shed light on condensed
matter systems.
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