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An analytical prediction is established of how an isolated many-body quantum system relaxes towards
its thermal longtime limit under the action of a time-independent perturbation, but still remaining
sufficiently close to a reference case whose temporal relaxation is known. This is achieved within the
conceptual framework of a typicality approach by showing and exploiting that the time-dependent
expectation values behave very similarly for most members of a suitably chosen ensemble of perturbations.
The predictions are validated by comparison with various numerical and experimental results from the
literature.
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The long-standing task to adequately explain the time-
dependent relaxation and ultimate equilibration of isolated
many-body quantum systems has recently witnessed a
veritable renaissance, driven, among others, by very
impressive new experimental and numerical capabilities
[1–4]. On the other hand, quantitative analytical interpre-
tations of the so-acquired data are still rather scarce. For
instance, a paradigmatic setup for probing the temporal
relaxation behavior of strongly correlated cold atoms was
originally proposed in the numerical works [5,6] and then
experimentally explored in Ref. [7], concluding that “the
exact origin of this enhanced relaxation in the presence
of strong correlations constitutes one of the major open
problems posed by the results presented here” [8]. The
main objective of our Letter is to better understand several
such experimental and numerical findings by considering
model Hamiltonians of the form

H ¼ H0 þ λV; ð1Þ

and asking how the temporal relaxation of the reference
system H0 is altered by a small perturbation λV.
Setting.—Given a (pure or mixed) initial state ρð0Þ, the

system (1) evolves in time as ρðtÞ ¼ e−iHtρð0ÞeiHt (ℏ ¼ 1),
resulting in expectation values hAiρðtÞ ≔ TrfρðtÞAg of an
observable (self-adjoint operator) A. Of foremost interest to
us are the deviations of those hAiρðtÞ from the correspond-
ing expectation values hAiρ0ðtÞ when the same initial state
ρð0Þ evolves according to the unperturbed Hamiltonian H0

in Eq. (1).
Denoting by En and jni the eigenvalues and eigenvectors

ofH, we assume as usual [1–4] that only energies En within
a macroscopically small but microscopically large interval
I ≔ ½E;Eþ Δ� entail non-negligible level populations
hnjρð0Þjni. Put differently, the system must exhibit a

macroscopically well-defined energy, while the number
of En ∈ I is still exponentially large in the degrees of
freedom [9,10], and the mean level spacing ε is approx-
imately constant throughout I [1–4]. Very low system
energies (close to the ground state) are incompatible with
these requirements and are thus tacitly excluded. Finally, ε
is assumed to be (practically) independent of the perturba-
tion strengths λ considered in Eq. (1). Since the level
density 1=ε is—according to the textbook microcanonical
formalism—directly connected to the system’s thermody-
namics, we thus concentrate on sufficiently weak pertur-
bations in the sense that phase transitions or other
significant changes of the thermal equilibrium properties
are ruled out.
Next we adopt the common idea of statistical mechanics

that the system’s many-body character inevitably implies
some uncertainties about the microscopic details. Hence,
we temporarily consider an entire class of similar pertur-
bations instead of one particular V in Eq. (1). More
precisely, denoting by V0

μν ≔ 0hμjVjνi0 the matrix elements
of V in the eigenbasis jνi0 ofH0, we choose an ensemble of
matrices whose statistics still reflects the essential proper-
ties of the “true” perturbation V in Eq. (1) as closely as
possible. For instance, if H0 models noninteracting par-
ticles and V some few-body interactions, the true matrix
V0
μν is known to be sparse (most entries are zero) [11–14].

Similarly, the true perturbation may give rise to a so-called
banded matrix [14–18]. Accordingly, it is appropriate to
work with a possibly (but not necessarily) sparse and/or
banded random matrix ensemble.
Denoting ensemble averages by ½� � ��V, the V0

μν’s are
considered as unbiased and—apart from V0

νμ ¼ ðV0
μνÞ�—

independent random variables, with second moments

½jV0
μνj2�V ¼ σ2vFðjμ − νjÞ; ð2Þ
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where the “band profile” FðnÞ approaches unity for small
n, and σ2v sets the overall scale. Moreover, FðnÞ is usually a
slowly varying function of n and upper bounded by a
constant of order unity. In particular, the matrices V0

μν may
still be sparse, while B ≔

P∞
n¼1 FðnÞ characterizes the

bandwidth if the matrix is banded, and B ¼ ∞ otherwise.
A more detailed discussion is provided in Ref. [19].
Results.—Our main result is the following analytical

prediction of how the unperturbed behavior hAiρ0ðtÞ is
modified by a typical perturbation, i.e., for the vast majority
of V ’s from a given ensemble,

hAiρðtÞ ¼ hAimc þ jgðtÞj2fhAiρ0ðtÞ − hAimcg: ð3Þ

Here hAimc is the microcanonical expectation value corre-
sponding to the energy window I, and gðtÞ depends on the
mean level spacing ε, the coupling λ, and the properties of
the random matrix ensemble from Eq. (2). In particular, for
sufficiently weak perturbations we find that

gðtÞ ¼ expf−Γt=2g; Γ ≔ 2πλ2σ2v=ε; ð4Þ

where “sufficiently weak” means—besides the require-
ments in the section “Setting”—that Γ ≪ εB. Likewise,
we find that

gðtÞ ¼ 2J1ðγtÞ=γt; γ ≔
ffiffiffiffiffiffi
8B

p
λσv; ð5Þ

for γ ≫ εB (“sufficiently strong” perturbations), where
JνðxÞ are Bessel functions of the first kind. In between,
gðtÞ exhibit as transition from Eq. (4) to Eq. (5) as detailed
in Ref. [19].
Before turning to their derivation, we further discuss and

exemplify those results (3)–(5): So far, these are predictions
regarding the vast majority of a given V ensemble. As usual
in random matrix theory [10,11,13–16], one thus expects
that the true (nonrandom) perturbation V in Eq. (1) belongs
to that vast majority, provided its main properties are well
captured by the considered ensemble. Note that the micro-
scopic dynamics of a many-body system is commonly
expected to be extremely sensitive against perturbations
(chaotic [37]), so that it is virtually impossible to theoreti-
cally predict its response exactly or in terms of well-
controlled approximations [38]. Hence, some kind of
“uncontrolled” approximation is practically unavoidable.
One of them is random matrix theory, which in fact has
been originally devised by Wigner for the very purpose
of exploring chaotic quantum many-body systems, and is
by now widely recognized as a remarkably effective tool
in this context [37]. Another common justification is by
comparison with particular examples, to which we now
turn. These will be state-of-the-art numerical and exper-
imental results from previous publications, which, how-
ever, do not contain the corresponding (numerical) data for
the variances required in Eq. (2). We will thus concentrate

on the weak perturbations regime, where Eq. (4) applies.
Again, the quantitative values of σ2v=ε required in Eq. (4)
can, in principle, be computed, but have not been provided
in those publications, and will therefore be treated as fit
parameters.
Examples.—Our first example is the numerical explora-

tion by Flesch et al. [6] (see also Ref. [5]) of the bosonic
Hubbard chain

H ≔ −J
XL
i¼1

ðb̂†iþ1b̂i þ b̂†i b̂iþ1Þ þ
U
2

XL
i¼1

n̂iðn̂i − 1Þ; ð6Þ

with periodic boundary conditions, creation (annihilation)
operators b̂†i (b̂i), and n̂i ≔ b̂†i b̂i. For the initial state ρð0Þ
considered in Ref. [6] and Fig. 1, the model (6) can be
recast as an effective spin-1=2 chain by means of a mapping
that becomes asymptotically exact for large interaction
parameters U [39]. In the limit U → ∞, the so-obtained
“unperturbed” effective Hamiltonian H0 amounts to an XX
model. The leading finite-U correction takes the form
U−1H1, where H1 contains nearest neighbor, next-nearest
neighbor, as well as three-spin terms [39]. In other words,
H1 plays the role of the perturbation V in Eq. (1), and 1=U
that of λ. Since hAiρ0ðtÞ and hAimc are known (see Ref. [6]
and Fig. 1), the only missing quantity is σ2v=ε in Eq. (4),
which is, as mentioned above, not provided by Ref. [6],
and hence treated as a fit parameter, yielding Γ ¼ 4.98λ2.
The resulting agreement with the numerics in Fig. 1 speaks
for itself.
An experimental realization of Eq. (6) by a strongly

correlated Bose gas has been explored by Trotzky et al.
in Ref. [7] and is compared in Fig. 2 with our theory
Eqs. (3), (4). Adopting Γ ¼ 4.98λ2 from before, this
amounts to an entirely analytic prediction without any fit

(a) (b)

FIG. 1. Bosonic Hubbard chain. Dashed lines: Numerical
results from Ref. [6] for the Hubbard model (6) with L ¼ 32,
J ¼ 1, and various λ ≔ 1=U, vertically shifted in steps of −0.25
for better visibility. The initial state consists of singly occupied
even and empty odd sites. The observables are A ≔ n̂1 in (a) and
A ≔ ðb̂†1b̂2 − b̂†2b̂1Þ=2i in (b), implying hAimc ¼ 1=2 in (a) and
hAimc ¼ 0 in (b). Dash-dotted lines: Unperturbed analytical
solutions hAiρ0ðtÞ ¼ ½1−J0ð4tÞ�=2 in (a) and hAiρ0ðtÞ ¼ J1ð4tÞ=2
in (b) [6]. Solid lines: Eqs. (3), (4) with Γ ¼ 4.98λ2.
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parameter. Incidentally, the agreement in Fig. 2 improves
as λ increases. The same tendency is recovered when
comparing the numerical results from Fig. 1(a) with the
experimental data, suggesting that the model (6) itself may
not capture all experimentally relevant details for large U
(small λ).
Next we turn to the spin-1=2 XXZ chain with anisotropy

parameter λ as specified in Fig. 3, exhibiting a gapless
“Luttinger liquid” and a gapped, Ising-ordered antiferro-
magnetic phase for λ ≤ 1 and λ > 1, respectively [40].
Similarly as before, σ2v=ε in Eq. (4) is unknown and hence
treated as a fit parameter. The analytics in Fig. 3 explains
the numerics by Barmettler et al. from Ref. [40] remarkably
well all the way up to the critical point at λ ¼ 1.
Our last example in Fig. 4 is a model of hard-core

bosons, numerically explored by Mallayya et al. in
Ref. [41], and exhibiting so-called prethermalization
[3,42,43] for small λ. Treating σ2v=ε again as a fit parameter,
our theory also explains very well such a prethermalization
scenario.
For lack of space, further examples have been moved to

the Supplemental Material [19], namely, the fermionic
systems from Refs. [44,45] and a case in which gðtÞ exhibits
a crossover from Eqs. (4) to (5) without any fit parameters.
Moreover, a scaling behavior Γ ∝ λ2 as in Eq. (4) has also
been reported, among others, in Refs. [3,46–49].
Derivation.—Adopting the notation as introduced below

Eq. (1), one readily confirms that

hAiρðtÞ ¼
X
m;n

eiðEn−EmÞtρmnð0ÞAnm; ð7Þ

where ρmnðtÞ ≔ hmjρðtÞjni and Anm ≔ hnjAjmi. Given that
in Eq. (7) only levels En ∈ I actually matter (see
Sec. Setting), and that their spacings Enþ1 − En generically
exhibit a Poisson- or Wigner-Dyson-like statistics [37] of
mean value ε, the random fluctuations of those Enþ1 − En
will also be of order ε and (practically) uncorrelated.

Hence, the En − Em exhibit typical deviations from their
mean value ðn −mÞε of order jn −mj1=2ε. Recalling that ε
is exponentially small [9,10] and jn−mjε≃ jEn−Emj≤Δ,
it is reasonable to expect—and justified in more detail in
Ref. [19]—that the deviations between ðEn − EmÞt and
ðn −mÞεt are negligible in Eq. (7) for all t of later
relevance. Employing this approximation and the unitary
basis transformation

Umν ≔ hmjνi0 ð8Þ

we rewrite Eq. (7) in terms of the unperturbed basis jνi0 as

hAiρðtÞ ¼
X

μ1;μ2;ν1;ν2

ρ0μ1ν2ð0ÞA0
μ2ν1W

μ1μ2
ν1ν2 ðtÞ; ð9Þ

FIG. 2. Cold atom experiments. Dots: Experimental data for
repulsively interacting Rb atoms in a 1D optical superlattice,
adopted from Fig. 2 in Ref. [7]. Initial condition, observable,
and dynamics experimentally emulate the theoretical ones from
Fig. 1(a). All further details (dash-dotted and solid lines, vertical
shifts) are as in Fig. 1.

FIG. 3. Spin-1=2 XXZ model of the form (1) with
H0 ≔

P
L−1
i¼1 ðSxi Sxiþ1 þ Syi S

y
iþ1Þ, V ≔

P
L−1
i¼1 Szi S

z
iþ1, observable

A ≔
P

L
i¼1ð−1ÞiSzi =L, and Néel initial state (see Ref. [40] for

more details). Dashed lines: Numerical results from Ref. [40] for
different λ, vertically shifted in steps of −0.25. Dash-dotted line:
Unperturbed analytical solution hAiρ0ðtÞ ¼ J0ð2tÞ=2 [40]. Solid
lines: Eqs. (3), (4) with hAimc ¼ 0, and Γ ¼ 0.46λ2.

FIG. 4. Hard-core boson model of the form (1) with H0≔P
i½−b̂†i ðb̂iþ1þ0.7b̂iþ2ÞþH:c:þðn̂i− 1

2
Þðn̂iþ1þ0.7n̂iþ2−0.85Þ�

and V≔
P

i½b̂iþ 1
2
ðb̂i−b†i Þb̂iþ1þH:c:� [see also Eq. (6) and

Ref. [41] ]. The initial state is thermal with respect to HI ≔
H0þ 1

2

P
i½b̂†i b̂iþ1þH:c:þðn̂i− 1

2
Þðn̂iþ1− 1

2
Þ�, and the observable

is A ≔ 1
L

P
i½b̂†i b̂iþ1 þ H:c:�. Dashed lines: Numerical results

from Ref. [41] for different λ. Solid lines: Eqs. (3), (4) using
the dashed line for λ ¼ 0 as hAiρ0ðtÞ, the numerical values for
hAimc quoted in Ref. [41], and Γ ¼ 4.2λ2.
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Wμ1μ2
ν1ν2 ðtÞ ≔

X
m;n

eiðn−mÞεtUmμ1Unμ2U
�
mν1U

�
nν2 ; ð10Þ

where ρ0μνð0Þ ≔ 0hμjρð0Þjνi0, and A0
νμ ≔ 0hνjAjμi0.

The randomness of V [see above Eq. (2)] is inherited
via Eq. (1) by the eigenvector overlaps Umν in Eq. (8). A
particularly important role is played by their second
moments, ½jUmνj2�V , which due to Eq. (2) only depend
on m − ν,

½jUmνj2�V ≕ uðm − νÞ: ð11Þ

Specifically, the function gðtÞ from Eq. (3) is defined as
their Fourier transform,

gðtÞ ≔
X
n

einεtuðnÞ: ð12Þ

As a first basic result of our present work, we show in
Ref. [19] that the function uðnÞ itself follows as
ðε=πÞlimη→0þImGðnε − iηÞ from the ensemble-averaged
(scalar) resolvent or Green’s function GðzÞ of H, which
in turn can be obtained as the solution of

GðzÞ½z − λ2σ2vε
−1

Z
Gðz − EÞFðjEj=εÞdE� ¼ 1: ð13Þ

Along these lines one readily recovers [19] for weak
perturbations as specified below Eq. (4) the previously
known Breit-Wigner distribution [14–16]

uðnÞ ¼ 1

2π

Γ=ε
ðΓ=2εÞ2 þ n2

; ð14Þ

with Γ from Eq. (4), and provided that δ ≔ ε=Γ ≪ 1. Our
next goal is to evaluate the ensemble-averaged time
evolution (9), hence we need the average of four Umν’s
in Eq. (10). The solution of this technically quite chal-
lenging problem by means of supersymmetry methods
[37,50,51] is provided in the Supplemental Material [19].
There, we also establish that δ is indeed exponentially small
in the system’s degrees of freedom f,

δ ≈ expf−OðfÞg ≪ 1: ð15Þ

Introducing those averages of four Umν’s into Eqs. (9)
and (10) finally yields

½hAiρðtÞ�V ¼ hAiρ̃ þ jgðtÞj2fhAiρ0ðtÞ − hAiρ̃g þ RðtÞ: ð16Þ

Here, ρ̃ is defined via 0hμjρ̃jνi0 ≔ δμν
P

κ ũðν − κÞρ0κκð0Þ
with ũðnÞ ≔ P

m uðn −mÞuðmÞ, essentially amounting
to a “washed-out” descendant of the so-called diagonal
ensemble [longtime average of ρ0ðtÞ] [1–3]. Following
Deutsch [16], hAiρ̃ is thus commonly considered [1,52,53]

to closely approximate the microcanonical expectation
value hAimc [see below Eq. (3)]. Furthermore, we can
infer from Eqs. (12), (14), and (15) that gðtÞ≃R
einεtuðnÞdn ¼ e−Γjtj=2, i.e., we recover Eq. (4). Finally,

the last term in Eq. (16) is given by

RðtÞ ≔
X
μ;ν

ρ0μμð0ÞA0
ννrðjtj; μ − νÞ; ð17Þ

rðt; nÞ ≔ e−ΓtũðnÞ
�
1 − cosðtnεÞ − Γ sinðtnεÞ

nε

�
: ð18Þ

Because of similar arguments as in the above approxima-
tion hAiρ̃ ≃ hAimc, this term is usually negligibly small. For
example, if the unperturbed system satisfies the eigenstate
thermalization hypothesis (ETH), the A0

νν are well approxi-
mated by hAimc [2,16,54,55]. Observing that

P
n rðt; nÞ ≃R

rðt; nÞdn ¼ 0 then immediately implies RðtÞ ≃ 0.
However, similar cancellations so that RðtÞ ≃ 0 can be
shown to persist under much more general conditions [56]
(some ETH violating examples are also provided above and
in Ref. [19]). Altogether, we thus obtain

½hAiρðtÞ�V ¼ hAimc þ jgðtÞj2fhAiρ0ðtÞ − hAimcg; ð19Þ

see also Refs. [3,13,57–64] for somewhat similar findings.
The advantage of Eq. (19) over Eq. (16) is that hAiρ̃ and

RðtÞ are often hard to determine in concrete examples. For
the rest—especially if the above approximations leading to
Eq. (19) might not apply—one also could continue to
employ Eq. (16) (for an example, see Sec. I B in Ref. [19]).
So far, we focused on sufficiently weak perturbations as

specified below Eq. (4). Beyond this regime, the solution
GðzÞ of Eq. (13) and hence gðtÞ from Eq. (12) will be
different, yet we still recovered [19] the same final
conclusion as in Eq. (19). In particular, for “sufficiently
strong” perturbations as specified below Eq. (5) one finds
[14,15,19] that uðnÞ approaches a semicircular distribution
with radius γ=ε and hence one recovers Eq. (5), while in the
intermediate regime, gðtÞ can still be readily obtained by
solving Eq. (13) numerically.
Our final objective is to quantify the fluctuations ξVðtÞ ≔

hAiρðtÞ − ½hAiρðtÞ�V about the average behavior in terms of
the variance ½ξ2VðtÞ�V . In view of Eqs. (9) and (10), averages
over eight Umν’s are thus required. Referring to Ref. [19]
for their quite tedious evaluation, we finally obtain the
estimate

½ξ2VðtÞ�V ≤ cδkAk2; ð20Þ

where kAk indicates the operator norm and c is some
positive real number, which does not depend on any further
details of the considered system and is at most on the order
of 103. Exploiting Chebyshev’s inequality, the probability
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that jξVðtÞj ≤ δ1=3kAk when randomly sampling V’s from
the ensemble can thus be lower bounded by 1 − δ1=3c. In
view of Eq. (15), the deviations from the average behavior
(19) are thus negligibly small for most V’s and any preset t.
Moreover, one can show similarly as in Ref. [65] that for
most V’s the deviations ξVðtÞ must be negligibly small not
only for any given t, but even for the vast majority of all t
within any given time interval ½t1; t2�. Overall, we thus
recover our main result from Eq. (3).
Conclusions.—We derived an analytical prediction for

the ensemble-averaged, time-dependent deviations of the
perturbed from the unperturbed expectation values in
isolated many-body quantum systems. Moreover, we
showed that nearly all members of the ensemble behave
very similarly to the average. Provided the ensemble has
been chosen appropriately, the same behavior is thus
typically expected to also apply when dealing with a
specific physical model, resulting in our main analytical
prediction (3). As a validation, we demonstrated good
agreement with a variety of numerical and experimental
findings from the literature. Technically speaking, sub-
stantial extensions of previously established, nonperturba-
tive supersymmetry methods were indispensable to arrive at
those results [19]. Related analytical [14,66] and numerical
[63] studies suggest that such methods may in the future
even be further extended to considerably more general
ensembles than those we admitted here. On the conceptual
side, a better understanding of when a given physical
system is not a typical member of any permitted ensemble
[62,67,68] remains as yet another important issue for
further studies.
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