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To realize fault-tolerant quantum computing, it is necessary to store quantum information in logical
qubits with error correction functions, realized by distributing a logical state among multiple physical
qubits or by encoding it in the Hilbert space of a high-dimensional system. Quantum gate operations
between these error-correctable logical qubits, which are essential for implementation of any practical
quantum computational task, have not been experimentally demonstrated yet. Here we demonstrate a
geometric method for realizing controlled-phase gates between two logical qubits encoded in photonic
fields stored in cavities. The gates are realized by dispersively coupling an ancillary superconducting qubit
to these cavities and driving it to make a cyclic evolution depending on the joint photonic state of the
cavities, which produces a conditional geometric phase. We first realize phase gates for photonic qubits
with the logical basis states encoded in two quasiorthogonal coherent states, which have important
implications for continuous-variable-based quantum computation. Then we use this geometric method to
implement a controlled-phase gate between two binomially encoded logical qubits, which have an error-
correctable function.
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Quantum computers process information in a way
fundamentally different from their classical counterparts,
where information is encoded in the state of a collection of
quantum bits (qubits) and algorithms are carried out by
performing a sequence of gates on these qubits [1]. Unlike
classical bits, qubits are vulnerable to decoherence arising
from coupling to the environment and noises of the control
fields, which is one of the main obstacles to construct a
large-scale quantum computer. To make a quantum com-
puter function under decoherence effects, quantum infor-
mation has to be stored in logical qubits, with which errors
can be detected and corrected. In traditional quantum error
correction (QEC) schemes, a logical qubit is redundantly
encoded in multiple physical qubits [2]. QEC based on
these kinds of encoding schemes has been demonstrated in
various systems, including nuclear spins [3,4], nitrogen-
vacancy centers in diamond [5–7], photons [8], trapped
ions [9–11], and superconducting qubits [12–16]. To run a
quantum algorithm with these logical qubits, it is necessary
to be capable of performing quantum gate operations
between them, but which have not been demonstrated yet.
Error-correctable logical qubits can also be constructed

by encoding the quantum information in the large Hilbert
space of a harmonic oscillator, whose state can be con-
trolled by using an ancillary qubit resonantly [17–19] or
dispersively [20–24] coupled to it. The Schrödinger cat
code [25,26] and the binomial code [27] are paradigms of

this approach, with each of which demonstrations of QEC
have been reported in superconducting circuits [28,29],
where an ancillary transmon qubit dispersively coupled
to a three-dimensional cavity is used to detect and correct
the photon loss of the multiphoton logical qubit stored
in the cavity. With similar setups, universal single-qubit
gate sets based on both encodings were realized by the
gradient ascent pulse engineering (GRAPE)method [29,30].
Recently, a quantum controlled-NOT gate between two
asymmetrically encodedphotonic qubits, respectively, stored
in two cavities has been demonstrated [31]. This gate was
realized by encoding the codewords of the control qubit on
the vacuum state and two-photon state, which form a logical
space where errors due to photon loss cannot be corrected.
Entangling gate operations between two error-correctable
logical qubits still remain elusive.
We here demonstrate a geometric method which enables

realization of controlled-phase gates for photonic qubits
with different encodings, in particular for two error-cor-
rectable logical qubits by using an ancillary transmon qubit
dispersively coupled to the cavities storing the correspond-
ing photonic qubits. With two successive carefully
designed microwave pulses, the ancillary qubit is parallel
transported along a closed loop on the Bloch sphere,
picking up a geometric phase [32–37], conditional on
the particular component of the photonic qubits. The
magnitude of the acquired geometric phase is controllable
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by the phase difference between the two applied pulses. We
first employ this geometric phase to realize single- and two-
cavity phase gates with coherent-state encoding. With this
encoding, the single-cavity phase gate corresponds to
manipulating the photon-number parity of a multiphotonic
cat state. We further extend our method to implement a
controlled-Z (CZ) gate between two binomial logical
qubits, each of which has inherent error correction function.
We demonstrate that this gate can evolve the two logical
qubits to a maximally entangled state. The procedure can
be straightforwardly and easily generalized to realize phase
gates among multiple error-correctable logical qubits.
The experiments presented in this work are based on two

circuit quantum electrodynamics (QED) devices [38–42].
Device A, on which single-cavity geometric phase gates are
performed, consists of two transmon qubits simultaneously
dispersively coupled to two three-dimensional cavities [43–
45]. The parameters and architecture setup are described in
Ref. [46]. Device B, on which two-cavity geometric phase
gates are performed, consists of three transmon qubits
dispersively coupled to two cylindrical cavities [47] and
three stripline readout cavities [48]. The device parameters
are described in Ref. [49]. In device A, the coupling
between the qubit (Q1) used to produce the geometric
phase and the cavity used to encode this phase is described
by the Hamiltonian

H ¼ −ℏχqsa†ajeihej; ð1Þ

where χqs denotes the qubit frequency shift induced by per
photon, a† and a are the creation and annihilation operators
for the particular cavity field, respectively, and jei ðjgiÞ is
the excited (ground) state of the qubit. In device B, the
qubit, commonly coupled to two cavities used to store the
photonic qubits, undergoes a frequency shift dependent on
the photon numbers of both cavities.
The geometric manipulation technique is well exempli-

fied with the even cat state ðjαic þ j − αicÞ=
ffiffiffi

2
p

, where jαic
and j − αic are coherent states, which can act as the
two basis states of a logical qubit when chαj − αic≈
Oðe−2jαj2Þ ≪ 1. To realize conditional qubit rotations, a
phase-space displacement, DðαÞ, is applied to the cavity,
transforming its state to ðj2αic þ j0iÞ= ffiffiffi

2
p

. The qubit,
initially in the ground state jgi, is then driven by a classical
field on resonance with the qubit frequency conditioned on
the cavity’s vacuum state j0i. We here assume that the Rabi
frequency ε of the drive is much smaller than n̄χqs, where
n̄ ¼ 4jαj2 is the average photon number of the state j2αic.
In this case, the qubit’s state is not changed by the drive
when the cavity is in j2αic due to the large detuning, and
the system dynamics is described by the effective
Hamiltonian

Heff ¼
1

2
ℏεeiϕjeihgj ⊗ j0ih0j þ H:c:; ð2Þ

where ϕ is the phase of the drive. This Hamiltonian
produces a qubit rotation Rθ

n conditional on the cavity’s
vacuum state, where Rθ

n represents the operation that rotates
the qubit’s state by an angle θ ¼ R

τ
0 εdt around the axis n

with an angle ϕ to x axis on the equatorial plane of the
Bloch sphere, with τ being the pulse duration.
After two successive conditional π rotations Rπ;0

n1
¼

Rπ
n1

⊗ j0ih0j and Rπ;0
n2

¼ Rπ
n2

⊗ j0ih0j, the qubit makes a
cyclic evolution, returning to the initial state jgi but
acquiring a phase γ¼πþΔϕ¼Ω=2, where Δϕ¼ϕ1−ϕ2

represents the angle between the two rotation axes, and
Ω is the solid angle subtended by the trajectory traversed
by the qubit on the Bloch sphere, as shown in Fig. 1(a).
This conditional phase shift leads to the cavity state
ðj2αic þ eiγj0iÞ= ffiffiffi

2
p

. A subsequent displacement Dð−αÞ
transforms the cavity to the state ðjαic þ eiγj − αicÞ=

ffiffiffi

2
p

,
realizing the phase gate. Because of the quantum interfer-
ence of the two superposed coherent state components jαic
and j − αic, the cavity photon-number parity P exhibits a
periodical oscillation when the geometric phase γ is varied:
P ¼ cos γ. This procedure allows for manipulation of the
parity of the cat state; when γ ¼ π, the parity is reversed.

(a)

(b)

(e)

(c) (d)

FIG. 1. Geometric manipulation of a photonic cat state.
(a) Schematic of the nonadiabatic AA phase of a qubit. Two
successive π rotations of the qubit produce a geometric phase
γ ¼ π þ φ, where φ is the angle between the two rotation axes.
(b) Experimental sequence to manipulate the cat state. A cavity is
dispersively coupled to the qubit and initialized in a cat state
ðj0i þ j2αicÞ=

ffiffiffi

2
p

with the help of an ancillary qubit Q2. The AA
phase produced by the rotations of Q1 conditional on the cavity’s
vacuum state is encoded in the probability amplitude of j0i,
resulting in a phase gate. (c) Measured Wigner function of the
cavity state before the phase gate, corresponding to fidelity of
0.980 to the ideal cat state. (d) Wigner function of the cavity state
after the gate with φ ¼ 0. The slight rotation and deformation of
the Wigner function is due to the self-Kerr effect of the cavity.
(e) Measured parity of the cavity state as a function of φ after a
displacement Dð−αeiδÞ for different values of δ. Symbols are
experimental data, in excellent agreement with numerical sim-
ulations (solid lines).
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To simplify the operation, in our experiment the cavity
displacement before the conditional qubit rotation is
incorporated with the preparation of the initial cavity state;
j2αic and j0i instead act as the two logical basis states j0iL
and j1iL for the single-cavity phase gate demonstration. We
note that there is a compromise of choosing the value of α.
On one hand, a larger cat size is favorite for decreasing the
overlapping between the two coherent state components,
and for shortening the gate duration. On the other hand, the
gate infidelity caused by the Kerr effects increases with the
cat size. In our experiment, α ¼ ffiffiffi

2
p

; with this setting
the total gate error is minimized. The experimental
sequence to manipulate a cat state with device A is shown
in Fig. 1(b). The cavity is initialized in the cat state
ðj2αic þ j0iÞ= ffiffiffi

2
p

[the measured Wigner function is shown
in Fig. 1(c)] with the help of ancillary qubit Q2 following
the GRAPE technique [50,51]. The two subsequent condi-
tional π rotations on Q1 yield a geometric phase γ ¼ π þ φ
conditional on j0i, where φ is the angle between the two
rotation axes. The Wigner function of the cavity state
after this single-cavity geometric phase gate is shown in
Fig. 1(d) with φ ¼ 0. After a displacement Dð−αeiδÞ, the
parity of the cavity state as a function of φ is measured and
shown in Fig. 1(e), in excellent agreement with numerical
simulations.
Quantum process tomography (QPT) is used to bench-

mark the cavity geometric phase gate performance, with the
experimental sequence shown in Fig. 2(a). Since trusted
operations and measurements necessary for QPT are
unavailable in the coherent-state-encoded subspace, we
characterize the gate by decoding the quantum information
on the cavity back to the transmon qubitQ2. We use the so-
called Pauli transfer process R matrix as a measure of our
gate [52], which connects the input and output Pauli
operators with Pout ¼ RPin. Figure 2(b) shows the Rmatrix
fidelity decay as a function of m, the number of the π
phase (Z) gate. The fidelity at m ¼ 0 quantifies the “round
trip” process fidelity FED ¼ 0.969 of the encoding and
decoding processes only. A linear fit of the process fidelity
decay gives the Z gate fidelity FZ ¼ 0.987, also consistent
with the fidelity calculated from FZ ¼ 1 − ðFED − FZ EDÞ,
where FZ ED ¼ 0.957 is the measured fidelity includ-
ing the encoding and decoding processes. The measured
and the ideal Pauli transfer R matrices of the S gate and T
gate are shown in Fig. 2(c), where S ¼ j0iLh0j þ ij1iLh1j
and T ¼ j0iLh0j þ exp ðiπ=4Þj1iLh1j.
Our method can be directly generalized to implementa-

tion of controlled-phase gates between two photonic qubits
encoded in two cavities that are dispersively coupled to one
common superconducting qubit [53,54]. Figure 3 shows
the two-cavity geometric phase gates based on device B,
whose schematic is shown in Fig. 3(a). Besides the trans-
mon qubit commonly connected to both cavities, each
cavity is individually coupled to another ancillary transmon
qubit for encoding and decoding and measurement

purposes. A two-cavity CZ gate with the coherent state
encoding fj0iL ¼ jαic; j1iL ¼ j − αicg for both cavities is
implemented by sandwiching a conditional qubit rotation
between two pairs of displacement operations. The first pair
of displacements transform the coherent states jαic and
j − αic of each cavity to j2αic and j0i, respectively. The
subsequent pulse, applied to the common qubit, produces a
2π rotation conditional on each cavity being in the vacuum
state. The second pair of displacements restore each
coherent state to the original amplitude. Consequently,
the two cavities undergo a π phase shift if and only if they
are both in the logical state j1iL.
Here, we use the two-cavity QPT method to benchmark

the performance of our realized CZ gate, with the exper-
imental sequence shown in Fig. 3(b). We first prepare the
two cavities in a product state j0iLðj0iL þ j1iLÞ=

ffiffiffi

2
p

or
j1iLðj0iL þ j1iLÞ=

ffiffiffi

2
p

in two separate experiments. After
performing the two-cavity CZ gate, the even cat state
ðjαic þ j − αicÞ=

ffiffiffi

2
p

in the target cavity S1 evolves to even
(odd) cat state when the control cavity S2 prepared in j0iL
(j1iL), which is verified by the Wigner functions of the
target cavity S1 measured before and after the two-cavity
CZ gate as shown in Fig 3(c).
With the two-cavity QPT method, we fully characterize

the realized CZ gate with the measured Pauli transfer R
matrix, together with that for the ideal CZ gate, displaced in
Fig. 3(d). The obtained process R matrix fidelities, FCZ ED
and FED, are respectively 0.859 and 0.954, which indicate
the intrinsic two-cavity CZ gate fidelity is FCZ ¼ 0.905,
with the infidelities mainly coming from the control pulse
imperfections [49].
Our method allows implementation of a gate between

two error-correctable logical qubits. For logical qubits

(a)

(b)
(c)

FIG. 2. Quantum process tomography (QPT) of single-cavity
geometric phase gates. (a) Experimental sequence. (b) The Pauli
transfer process R matrix fidelity as a function of m, the number
of the Z gate on the cavity state. The insets show the measured R
matrices after one and nine Z gates, respectively. A linear
fit of the process fidelity decay gives the Z gate fidelity
FZ ¼ 0.987� 0.001. (c) The measured and ideal Pauli transfer
R matrices of the S gate and T gate with fidelities FS ¼ 0.968
and FT ¼ 0.964.
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whose basis states are encoded in even cat states, the
photon-number parity can be used as an error syndrome of
the single-photon loss [25,26,28,64]. With this encoding,
each of the two-qubit logical basis states is composed of
four two-mode coherent state components, and a CZ
gate can be realized by subsequently performing four
conditional phase operations. We note that the dis-
placements necessary for realizing these operations will
move the logical qubits out of the error-correctable logical
space. This problem can be overcome with another kind
of error-correctable logical qubits binomially encoded as
fj0iL ¼ ðj0i þ j4iFÞ=

ffiffiffi

2
p

; j1iL ¼ j2iFg [27,29].
To demonstrate the applicability of our method to

binomial logical qubits, we first binomially encode the
two cavities, then perform a CZ gate between thus-encoded
qubits via geometric manipulation, and finally read out
their joint state. The experimental sequence is similar to
that in Fig. 3(b) but without the displacements. Because of

the limitation of the dispersive couplings between the
ancillary qubit and the cavities, the drive tuned to the
ancilla’s frequency associated with the cavities’ basis state
j22iF will off-resonantly couple the ancilla’s jgi and jei
states, and thus produce a small dynamical phase when the
cavities are in other joint photon-number states. To mini-
mize this dynamical effect and to speed up the gate, we
successively apply two π pulses to the ancilla: the first one
has a duration of 20 ns and is nonselective; while the
second one has a duration of 2 μs and involves nine
frequency components, each selective on one of the
following nine joint Fock states jj; kiF (j, k ¼ 0, 2, 4).
With suitable choice of the amplitudes and phases of these
driving components, the resulting phase shift associated
with the logical state j22iF differs from those with other
joint Fock states by π.
The two-cavity QPT method is also used here to

benchmark the realized CZ gate with the binomial encod-
ing, and the measured corresponding Pauli transfer R
matrix is displayed in Fig. 4(a). The corresponding process
fidelity FCZ ED (FED) obtained from the measured Rmatrix
is 0.816 (0.922), which indicates the intrinsic CZ gate
fidelity FCZ ¼ 0.894. We note that during the gate oper-
ation, it is unnecessary to change the photon numbers for
both cavities, so that they remain in the original logical
space. This gate, together with single-qubit rotations,
allows generation of entangled Bell states for the two
logical qubits, as shown in Fig. 4(b). We note that single-
photon loss can be corrected with this encoding in
principle, but the present gate is not realized fault tolerantly
as the photon loss occurring during the gate will result in a
random phase, destroying the stored quantum information.
Recently, fault-tolerant phase gates on single binomially
encoded photonic qubit were realized [65,66], however,
fault-tolerant implementation of two-qubit gates remains an
outstanding task.

(a)

(b)

(c)

(d)

FIG. 3. Two-cavity geometric phase gate. (a) A 3D view of
device B. A superconducting transmon qubit Q3 at the center
couples to two coaxial cavities S1 and S2, which couple to two
other individual ancillary transmon qubits Q1 and Q2, respec-
tively. Each of these transmon qubits independently couples to a
stripline readout resonator used to perform simultaneous single-
shot readout. (b) Schematic of the experimental sequence.
(c) Measured individual Wigner functions of storage cavity S1
and S2. When the control cavity S2 prepared in jαic (j − αic), the
even cat state ðjαic þ j − αicÞ=

ffiffiffi

2
p

in target cavity S1 evolves to
even (odd) cat state under the two-cavity CZ gate. The slight
rotation and deformation of the Wigner functions after gate are
due to the Kerr effect of the cavities. (d) Ideal (left) and measured
(right) Pauli transfer R matrices of the two-cavity CZ gate with
the coherent encoding fj0iL ¼ jαic; j1iL ¼ j − αicg. The corre-
sponding process fidelity FCZ ED (FED) is 0.859 (0.954).

(a) (b)

FIG. 4. Two-cavity CZ gate with binomial encoding.
(a) Measured Pauli transfer R matrix of the two-cavity CZ gate
with the binomial encoding. The corresponding process fidelity
FCZ ED (FED) is 0.816 (0.922). (b) The measured and ideal
joint Wigner function of the entangled logical Bell state
jΦþi ¼ ðj01iL þ j10iLÞ=

ffiffiffi

2
p

on the Im-Re and Im-Im planes,
respectively.
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Combined with additional single-cavity Hadamard gates
of the binomial logical qubits realized by using the GRAPE
technique, our two-cavity CZ gate can be used to directly
generate an entangled logical Bell state jΦþi ¼ ðj01iLþ
j10iLÞ=

ffiffiffi

2
p

. With the help of two ancillary qubits, joint
Wigner tomography of the generated Bell state is per-
formed. The upper row of Fig. 4(b) displays the two slice
cuts of the measured two-mode Wigner functions for the
generated Bell state, which agree well with those for the
ideal logical Bell state shown in the lower row in Fig. 4(b).
The fidelity of this entangled state, measured by decoding
the logical states back to the ancillary qubits and then
performing a joint state tomography, is 0.861.
Besides the controlled-phase gates, the geometric

dynamics can be used to realize a two-cavity selective
number-dependent arbitrary phase gate [49], which repre-
sents an extension of the previously reported selective
number-dependent arbitrary phase operation for universal
control of a single cavity state [22,23]. The method can also
be directly generalized to realize geometric gates among
three or more cat-encoded or binomially encoded qubits by
properly setting the driving pulse. This kind of gate is
useful for quantum error correction [12] and serves as a
central element for implementation of the quantum search
algorithm [1].
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