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We describe a Sagnac interferometer suitable for rotation sensing, implemented using an atomic Bose-
Einstein condensate confined in a harmonic magnetic trap. The atom wave packets are split and recombined
by standing-wave Bragg lasers, and the trapping potential steers the packets along circular trajectories with
a radius of 0.2 mm. Two conjugate interferometers are implemented simultaneously to provide common-
mode rejection of noise and to isolate the rotation signal. With interference visibilities of about 50%, we
achieve a rotation sensitivity comparable to Earth’s rate in about 10 min of operation. Gyroscope operation
was demonstrated by rotating the optical table on which the experiment was performed.
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Sensitive and accurate rotation sensing is a critical
requirement for applications such as inertial navigation
[1], north-finding [2], geophysical analysis [3], and tests
of general relativity [4]. One effective technique used for
rotation sensing is Sagnac interferometry, in which awave is
split, traverses two paths that enclose an area, and then
recombined. The resulting interference signal depends on
the rotation rate of the system and the area enclosed by the
paths [5]. Optical Sagnac interferometers are an important
component in present-day navigation systems [6], but suffer
from limited sensitivity and stability. Interferometers using
matter waves are intrinsically more sensitive and have
demonstrated superior gyroscope performance [7–9], but
the benefits have not been large enough to offset the
substantial increase in apparatus size and complexity that
atomic systems require. It has been suggested that these
problems might be overcome using atoms confined in a
guiding potential or trap, as opposed to atoms falling in free
space [10–12]. The trap can support the atoms against
gravity, so a longmeasurement time can be achievedwithout
requiring a large drop distance. The trap can also control the
trajectory of the atoms, causing them to move in a circular
loop that provides a large enclosed area for a given linear size
[13]. Herewe use such an approach to demonstrate a rotation
measurement with Earth-rate sensitivity.
A small number of trapped-atom Sagnac interferometers

have been demonstrated in the past [14–18], but none have
been used to make a quantitative rotation measurement.
The largest enclosed areas have been achieved using a
linear interferometer that is translated along a direction
perpendicular to the interferometer axis [15,18], but this
approach may not be well suited for inertial measurements
in a moving vehicle. Here, we demonstrate a true two-
dimensional interferometer configuration in which atoms
travel in circular trajectories through a static confining

potential. We obtain an effective enclosed area of
0.50 mm2, compared to areas of 0.20 mm2 reported by
Wu et al. [15] and 0.35 mm2 recently obtained by the
Boshier et al. [18]. We argue below that our effective area
can be scaled up to 1 cm2 or more, which would offer
sensitivity sufficient for many practical applications.
Another key advance is the use of dual counterpropagat-

ing interferometer measurements. Here, two Sagnac inter-
ferometers are implemented at the same time in the same
trap, using atoms traveling with opposite velocities over the
same paths. This technique was developed for free-space
interferometers [8] and allows common-mode rejection of
phase noise that can otherwise mask the rotation signal.
The Sagnac effect itself is differential and can be extracted
by comparing the two individual measurements. This
technique is likely to be essential for a practical rota-
tion-sensing system, but it has not previously been dem-
onstrated in a trapped-atom device.
Our Sagnac interferometer is implemented using a Bose-

Einstein condensate confined in a three-dimensional trap,
with potential energy

Vðx; y; zÞ ¼ 1

2
mðω2

xx2 þ ω2
yy2 þ ω2

zz2Þ; ð1Þ

where m is the atomic mass and the ωi are the trap
frequencies. We consider first the ideal case where the
trap is cylindrically symmetric ωx ¼ ωy ¼ ω0, and the
atoms form a pure condensate with negligible interactions
at rest in the center of the trap. The atoms are manipulated
using a set of standing-wave Bragg lasers [19,20] propa-
gating along the x and y directions. The beams couple
atomic states with momenta p and p� 2ℏk, where k is the
wave vector of the laser. We express this in terms of a Bragg
velocity kick vB ¼ 2ℏk=m.
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The interferometer measurement begins by applying the
Bragg beams along y. This generates two wave packets
with velocities v ¼ �vBŷ. The wave packets move in the
trap, with their centers of mass following the ordinary
trajectory for a harmonic oscillator, xðtÞ ¼ 0 and
yðtÞ ¼ �ðvB=ω0Þ sinω0t. After a time t1 ¼ π=ð2ω0Þ, the
atoms come to rest near the classical turning point at a
radius R ¼ vB=ω0. The Bragg beams traveling along x are
then applied to both packets, providing velocity kicks
�vBx̂ and generating a total of four packets. Each of these
packets now travels in a circle with radius R, as xðtÞ ¼
�R sinω0t and yðtÞ ¼ �R cosω0t. The atoms propagate
for time t2 ¼ 2π=ω0, completing one full orbit around the
trap. Figure 1(a) illustrates the packet trajectories.
After the orbit, the pairs of packets are overlapped again

at their locations prior to the x Bragg pulse. The wave
function of a pair can be expressed as

jψi ¼ 1ffiffiffi
2

p ðeiΦ=2j þ vBi þ e−iΦ=2j−vBiÞ; ð2Þ

where Φ is the phase developed between the packets
and j�vBi are states with the indicated velocity along x.
The x Bragg beams are now applied again. The even
superposition ðjþvBi þ j−vBiÞ is coupled back to the zero-
momentum state j0i, while the odd superposition ðjþvBi −
j−vBiÞ remains unchanged (up to an overall phase).
Projecting the wave function jψi onto this basis, we find
that a fraction S ¼ cos2ðΦ=2Þ of the atoms are brought
back to rest [21,22].
To detect the result of the recombination, the moving and

stationary atoms are allowed to separate, the trap is turned
off, and the entire system is observed using absorption
imaging in the xy plane. Figure 1(b) shows the measured
positions of one packet as it traverses the trap. A video

showing the motion of all four packets is available in the
Supplemental Material [23]. Figure 2(a) shows a typical
absorption image after the recombination pulse.
This sequence produces two independent interferometer

measurements. We define Φþ as the phase measured for
atoms at y ¼ þR, and Φ− as the phase measured at
y ¼ −R. Each of these individual phases is sensitive to a
variety of effects including magnetic field variations,
mechanical vibration, and laser phase noise. Most of these
effects will be the same for both interferometers, but if the
system is rotating with angular velocity Ω, then the Sagnac
phases

ΦS ¼
1

ℏ

I
ΔL ·Ω dt ¼ 4mΩA

ℏ
ð3Þ

will have the opposite sign. Here ΔL ¼ r2 × p2 − r1 × p1

is the difference in angular momentum between the two
packets, and A ¼ πR2 is the area of a single packet’s orbit.
This leads to a differential phase

ΔΦ ¼ Φþ −Φ− ¼ 2ΦS ¼
8mΩA

ℏ
: ð4Þ

We implement the interferometer using approximately
104 87Rb atoms that are magnetically trapped in the F ¼ 2,
mF ¼ 2 ground state. The apparatus for condensate pro-
duction and generating the magnetic trap has been pre-
viously described [24]. Our time-orbiting potential (TOP)
trap [25] uses a special field configuration that allows
precise experimental control of the trap parameters. The
bias field of the TOP trap rotates as

(a) (b)

FIG. 1. (a) Trajectories of atoms in the interferometer. The
initial condensate (center) is split into two packets that move
along�y. When the packets reach their turning points at y ¼ �R,
they are split along x, generating four packets that move in
circular orbits (green and orange traces). After one complete orbit
the packets are recombined, forming two independent interfer-
ometers. (b) Experimental data showing the path of one packet,
starting at the red square and moving counterclockwise in 5 ms
increments. The scales are in mm.

(a) (b)

FIG. 2. (a) An absorption image in the xy plane taken 12 ms
after the recombination pulse was applied. Atoms that were
brought back to rest now oscillate along y, while the remaining
atoms continue to move along the dashed circle. Here, the
fraction of atoms brought to rest is small, indicating that both
interferometers measure a phase close to π. (b) The standard
deviations σþ and σ− of the two interferometer output signals, Sþ
and S−, are plotted as the interferometer time t2 is varied. When
the interference contrast is high, σ is large because of phase noise
from vibrations and other sources. At t2 ¼ 107.7 ms, both
interferometers exhibit good contrast.

PHYSICAL REVIEW LETTERS 124, 120403 (2020)

120403-2



Bb¼B0½ð1þαÞsinðΩ1tÞcosðΩ2tþβÞx̂
þð1−αÞsinðΩ1tÞsinðΩ2t−βÞ ŷþcosðΩ1tÞ ẑ�; ð5Þ

withΩ1 ≈ 2π × 104 Hz andΩ2 ≈ 2π × 103 Hz. The ampli-
tude asymmetry α and the phase β are nominally zero, but
can be adjusted to optimize the trap. The coordinates
ðx; y; zÞ are defined by the coil geometry, with z near
vertical. The trap also uses an oscillating quadrupole field,

Bq ¼
1

2
B0
1 cosðΩ1tÞðx x̂þ y ŷ − 2z ẑÞ: ð6Þ

These fields provide a trap potential VðrÞ ¼ μBhjBji, where
μB is the Bohr magneton and hjBji is the time average of
the magnetic field magnitude. Evaluation to second order in
the coordinates gives

V ¼ −
1

2
μBB1z

þ 1

2
mω2

0

��
1þ 2α

7

�
x2 þ

�
1−

2α

7

�
y2 þ 4

7
βxyþ 8

7
z2
�
;

ð7Þ
with ω0 ¼ ð7μBB0

1
2=64mB0Þ1=2. We set B0

1 ¼ 2mg=μB ≈
31 G=cm to cancel gravity at the center of the trap, and with
B0 ≈ 2 G we obtain ω0 ≈ 2π × 9 Hz.
The actual potential experienced by the atoms differs

from Eq. (7). For instance, we measure the oscillation
frequency along z to be about 11 Hz, which differs from
the 9.6 Hz prediction due to a combination of curvature in
the trap bias fields and unbalanced bias amplitudes in the
horizontal and vertical directions. If effects such as these
alter the wave packet trajectories so that they fail to overlap
in both position and momentum after an orbit, then the
interferometer will be spoiled. A classical trajectory cal-
culation indicates that the difference in trap frequencies
jωx − ωyj=2π must be less than 0.1 Hz, and the Bragg laser
beams must be aligned to better than 10 mrad accuracy. We
achieve these requirements by observing the packet tra-
jectories and adjusting α, β, the Bragg beam angles, and the
propagation times t1 and t2 until both interferometers are
closed and interference is observed. The resulting orbits are
nearly circular with a radius R ¼ 0.20 mm, as shown in
Fig. 1. The packets can also be imaged in the yz plane,
which is used to ensure overlap in the z direction.
When the Bragg beam and trap parameters are opti-

mized, we observe simultaneous interference for both
packet pairs. Each individual interferometer exhibits phase
noise, primarily due to vibrations of the mirror used to
retro-reflect the x Bragg beam. The appearance of this noise
is an indicator that interference is occurring, as shown in
Fig. 2(b). The duration of the contrast peaks indicates a
coherence length of 10 μm, which agrees with the Thomas-
Fermi condensate size for our trap [26]. The noise peak is
consistent with an interference visibility of about 50%,
which could be attributed to residual alignment errors.

In reality, the condensate source is not at zero temper-
ature. We generally observe no noncondensate atoms, but
given our imaging resolution the condensate fraction could
still be as low as 60%. This corresponds to a temperature of
about 7 nK, which is cold enough for the thermal atoms to
be split efficiently by the Bragg lasers [20]. We do not
observe interference for noncondensed atoms in the trap, so
the presence of a thermal fraction could also contribute to
the reduced visibility.
The lifetime of the condensate is about 60 s, which is

much longer than our 0.11 s interferometer time. The peak
density of a single packet is about 3 × 1012 cm−3, leading
to a 2% chance for an atom to be lost via elastic collisions
as two packets pass through each other. The chemical
potential of the initial condensate is about 2πℏ × 40 Hz, so
no internal condensate dynamics can occur during the
0.5-ms time that two wave packets interact. The Bragg
beam can excite breathing motion of the packets due to the
rapid decrease in interaction energy after splitting. We have
numerically simulated these excitations and find that they
have a negligible effect on the packet’s phase evolution
[27]. Any overall phases induced by interactions will be
common mode and cancel in ΔΦ.
Each interferometer’s output signal is S ¼ N0=N, the

fraction of atoms brought back to rest. When the two
signals Sþ and S− are plotted against each other, the data
fall on an ellipse, with the eccentricity and orientation of the
ellipse set by the differential phase [28]. Example data are
shown on the left in Fig. 3. We fit such data to an ellipse to
extract the phase ΔΦ, with an accuracy of about 0.2 rad
after ten runs of the experiment.
The effective Sagnac area of the interferometer is

4A ¼ 0.50 mm2, which implies a Sagnac phase of about

FIG. 3. Left: Points correspond to the two interferometer output
signals Sþ and S− from a given measurement. Curves are ellipses
fitted to the points. The orientation and eccentricity of the ellipse
reveals the differential phase ΔΦ between the interferometers.
Right: Dependence of the differential phase on the rotation
velocity of the optical table v on which the experiment rests,
illustrating the Sagnac effect. The shaded points correspond to the
matching data on the left. The nonzero phase at v ¼ 0 mm=s is
consistent with a weak anharmonicity of the trap potential.
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1.4 rad=ðmrad=sÞ. In order to observe the Sagnac sensi-
tivity of the interferometer, we rotated the optical table on
which the apparatus sits. The table floats on air legs that
allow a few mm of horizontal motion. We used a motorized
translation stage to move one end of the table during the
interferometer measurement. With a force of about 10 N,
linear speeds up to 0.7 mm=s could be achieved. The table
motion was initiated prior to the first Bragg pulse of the
interferometer sequence, and it continued at a constant
speed throughout the measurement. Results are shown
in Fig. 3.
Because the rotationmeasurements were not made using a

dedicated rate table, accurate calibration of the rotation rate is
difficult. Applying the Sagnac formula to the data in Fig. 3
indicates a rotation radius v=Ω of 0.5 m, in reasonable
agreementwith amechanical estimate of about 1m.The table
did not remain level during the rotation, but we experimen-
tally verified that the phase is insensitive to static tilts, and
numerical simulations indicate no significant sensitivity to
dynamic tilting. The one-sigma error bars in Fig. 3 corre-
spond to a rotation sensitivity of 8 × 10−5 rad=s, comparable
to the rotation rate of the Earth, ΩE ¼ 7.3 × 10−5 rad=s.
This rotation sensitivity is not exceptional, being about

what a careful observer might obtain by watching the
shadow of a sundial. An attractive sensitivity for inertial
navigation applications is 10−7 ðrad=sÞ= ffiffiffiffiffiffi

Hz
p

, correspond-
ing to an angle random walk of 3 × 10−4 deg =

ffiffiffiffiffi
hr

p
[1]. We

believe this performance level can be reached through the
use of a larger enclosed area, more rapid condensate
production, and reduction of technical noise. Lowering
the trap confinement frequency to 2 Hz would give an orbit
radius of 1 mm. To increase the area further, the packets can
be allowed tomakemultiple orbits through the trap.With ten
orbits, the total effective area would be 1.3 cm2 with a
measurement time of 5 s. An atom-chip apparatus can
produce a suitable condensate in less than 5 s with
reasonable size, weight, and power constraints [29].
Operating such a device at shot-noise limited phase accuracy
would provide the desired sensitivity for inertial navigation.
Implementing these improvements will require careful

control of the trapping potential to avoid extraneous phase
noise. The phase difference induced by the trap can be
calculated as [30]

Φtrap ¼
1

ℏ

Z
tf

ti

ðL1 − L2Þdt − k0 · Δrf; ð8Þ

where Li ¼ Ti − Vi is the Lagrangian evaluated along the
classical trajectory of packet i, 2ℏk0 ¼ mðv1f − v2fÞ is the
difference between the final momenta of the interfering
packets, and Δr ¼ r1f − r2f is the final packet separation.
In an ideal trap these contributions are zero, but the phase
can be significant in the presence of experimental imper-
fections. We have evaluated the differential phase ΔΦ
numerically, under a wide variety of conditions. We find the
dominant contribution from the trap to be

ΔΦtrap ≈ −40kR3nðnþ 1Þγc; ð9Þ

where k is the Bragg laser wave number, R is the orbit
radius, n is the number of orbits, and the trapping potential
includes nonideal terms

δV ¼ mω2
0

�
γxyþ 1

4
cρ4

�
: ð10Þ

The γ parameter can be precisely adjusted using the
TOP phase β, as in Eq. (5). The anharmonic term c depends
on the coil geometry, and can be adjusted through the use of
additional shim coils. By measuring how the oscillation
frequency varieswith amplitude,we find that c ≈ −0.3 mm−2

in our trap. For a TOP phase of β ¼ 10−2 rad, this corre-
sponds to δΦtrap ≈ 3 rad, which is consistent with the
zero-rotation offset seen in Fig. 3. In order to achieve shot-
noise-limited phase stability of 10−2 rad in the proposed
2 Hz trap, it will be necessary to have jγj < 10−5 and
jcj < 10−4 mm−2. These are challenging specifications, but
they should be reachable with careful design.
In summary, we have implemented a trapped-atom

Sagnac sensor with the largest enclosed area to date, which
for the first time uses simultaneous counter-rotating inter-
ferometers for common-mode noise rejection and demon-
strates actual rotation sensing. The rotation sensitivity is
comparable to Earth’s rate, and we argue that substantial
improvements are feasible. We also note that our interfer-
ometer scheme could be of interest for fundamental
physics. For example, it could be used to investigate the
phase evolution of the trapped atoms themselves, which
can exhibit nontrivial behavior such as phase diffusion [27]
and squeezing [14].
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