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We show—both theoretically and experimentally—that Einstein-Podolsky-Rosen steering can be
distilled. We present a distillation protocol that outputs a perfectly correlated system—the singlet
assemblage—in the asymptotic infinite-copy limit, even for inputs that are arbitrarily close to being
unsteerable. As figures of merit for the protocol’s performance, we introduce the assemblage fidelity and
the singlet-assemblage fraction. These are potentially interesting quantities on their own beyond the current
scope. Remarkably, the protocol works well also in the nonasymptotic regime of few copies, in the sense of
increasing the singlet-assemblage fraction. We demonstrate the efficacy of the protocol using a hyper-
entangled photon pair encoding two copies of a two-qubit state. This represents to our knowledge the first
observation of deterministic steering concentration. Our findings are not only fundamentally important but
may also be useful for semi-device-independent protocols in noisy quantum networks.
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Steering is a unique form of quantum nonlocality that
appears in hybrid quantum networks with both trusted and
untrusted components [1]. The first prototypes of the
quantum internet may implement such a scenario, where
only few members of the network (such as big servers)
would have the resources to fully characterize, and there-
fore trust, their devices, while the remaining participants
(such as the end users) would operate the untrusted devices.
These scenarios are referred to as semi-device-independent
(DD, in contrast to the fully DI context, where all
apparatuses are untrusted, or the device-dependent one,
with trusted components exclusively. A trusted device
allows for full quantum control of the system it operates,
e.g., through well-characterized quantum measurements on
it. A device is untrusted if one can only control its classical
settings (inputs), obtaining classical outcomes (outputs)
of uncharacterized measurements from it, thus effectively
working as a black-box device. Importantly, steering
certifies the presence of entanglement in a semi-DI fashion.
Because of this, apart from its fundamental relevance, it is
important also from an applied point of view: Steering is
known to be the key resource behind several information-
processing tasks in the semi-DI scenario [2,3].

However, as experimental quantum networks grow ever
more complex, the unavoidable noise and imperfections
become increasingly significant. This can severely degrade
the steering in the network, compromising the performance
of the implemented task. Distillation protocols are ideal for
these situations, as they concentrate the resource contained
in multiple copies of a noisy system into a pure maximally
resourceful system, which can then be directly used
safely for the task in question. Interestingly, distillation
protocols are known for the other two paradigmatic variants
of quantum nonlocality—namely, entanglement in the
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device-dependent framework and Bell nonlocality in the
fully DI one [4,5]—and also even for other important
quantum resources [6—11]. Nevertheless, to our knowledge,
almost nothing is known for the case of steering. The
related phenomenon of steering superactivation [12—14] is
known to exist, but requires complete quantum control on
all parties. In particular, it is not known whether steering
distillation exists (in the asymptotic regime of infinitely
many copies of the noisy system) or even if steering can be
partially purified in the finite-copy regime.

Here, we answer both questions in the affirmative. We
theoretically prove that steering distillation exists, devising
an explicit simple protocol for it. We show that such
protocol not only distills pure singlet assemblages (i.e., the
steering correlations generated by a maximally entangled
singlet state under ideal von Neumann measurements) in
the asymptotic infinite-copy regime but it also succeeds at
concentrating steering in the finite-copy regime. Moreover,
the proposed protocol distills quantum steering in a hybrid
scenario, where only one device applies controlled oper-
ations, while the other just deals with its inputs and outputs.
This is conceptually different from entanglement distilla-
tion, where fully quantum local operations and classical
communication (LOCC) are applied on both sides.
Remarkably, we demonstrated that an initial system with
an arbitrarily small (constant) amount of pure steering can
be distilled. To quantify the performance of the partial
purification in the finite-copy regime, we introduce the
assemblage fidelity as a measure of closeness between the
steering correlations of two different systems. Finally, we
experimentally demonstrate the efficacy of the protocol in
an optical setup with two hyperentangled photons, encod-
ing two copies of a 2-qubit state each. We observe a clear
increase of the protocol’s output’s singlet-assemblage
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fraction (the assemblage fidelity with respect to the singlet
assemblage).

Preliminary definitions.—We consider two parties, Alice
and Bob, sharing initially a correlated system in a semi-DI
scenario [Fig. 1(a)]. We assume that Alice has an untrusted
black-box device, while Bob holds a fully characterized
trusted quantum device. Alice’s input is represented by a
classical parameter x € [m], where [n] is a shorthand
notation for {0,1,...,n— 1} for any natural number n,
and m > 2 is the number of possible settings. For a given
choice x, a classical output a € [0] is obtained from the
black box, where 0 > 2 is the number of possible outputs.
Complete characterization of Bob’s device allows him to
reconstruct his quantum state.

The system is then completely described by the condi-
tional distribution { P(a|x)} ,e(o) e[ Of Obtaining an output
a from the black box given the input choice x, and by the
conditional quantum state p, , on Bob’s side, supported on
a local Hilbert space H g and possibly correlated to Alice’s
variables. Equivalently, both objects can be neatly encap-
sulated in the so-called assemblage [1], which is the list
Zaix = {04l faelo] xem] Of subnormalized bounded opera-

tors o, supported also on Hp, such that Tr[o,,] = P(alx)
and p, = 6,4/ Tr[o,].

(@) Alice Bob (c)

FIG. 1. (a) Bipartite semi-DI scenario. Alice can only perform
uncharacterized measurements on her device, which is then
effectively treated as a black box. Bob has full quantum control
on his system, allowing complete knowledge of his quantum
state. Together with Alice’s probability distribution for her black
box, the systems compose the assemblage X4 x. (b) Depiction of
a generic I W-LOCC. The assemblage can be manipulated locally
by both parties and Bob is allowed to communicate any classical
parameter to Alice. Alice’s wirings, represented by gray boxes,
allow creation of new random variables from previous ones by an
arbitrary distribution. (c) Protocol 1 for two copies of the original
assemblage. Bob applies a local filter on one of his qubits. A
successful outcome results in a singlet assemblage shared
between Alice and Bob, while failure produces an unsteerable
assemblage. In both cases, communication of Bob’s result to
Alice is used and the appropriate subsystem is then chosen by
both parties.

The assemblage is said to be steerable if it cannot be
written in terms of a local-hidden-states (LHS) model. This
means that there exists no hidden variable that turns Bob’s
state statistically independent from Alice’s variables; i.e.,
an assemblage X4 = {o}°}, , admits a LHS model if
there is a variable A admitting values A € [L], such that

olllS = "Pr(4)P(a
A

X, A)p- ()

L is the number of possible configurations for A, and P, is
their probability distribution. Bob’s local hidden states p,
are independent of Alice’s variables a and x in this case.

In the semi-DI scenario, operations are restricted due to
the lack of characterization of Alice’s device. Free oper-
ations—i.e., operations that do not create quantum steering
out of LHS assemblages—are restricted to one-way local
operations and classical communication (1W-LOCC) [15].
These correspond to local pre- and postprocessing oper-
ations of Alice’s classical inputs and outputs, respectively,
conditioned on the outputs of quantum operations on Bob’s
side. Examples of these are shown in Fig. 1.

Distillation of quantum steering.—The task of steering
distillation consists of extracting from N copies of a weakly
steerable assemblage a smaller number of an extremal
assemblage with a purer form of steering, using free
operations only. We consider as target here a singlet
assemblage, i.e., an assemblage obtained from a singlet
state by orthogonal rank-1 projective measurements on
Alice’s side. These are extremal in the sense that they
cannot be obtained from other singlet assemblages via 1 W-
LOCC [15]. Furthermore, they are known to maximize
important measures of quantum steering [3,16,17]. In

particular, we consider the singlet assemblage Eg’&

obtained from the maximally entangled state |®T):=
(|00) + |11))/+/2 when Alice’s measurements correspond
to the Pauli matrices Z and X. This assemblage is
characterized by the components

1 1
ag’lg = §|0><O , aﬁg = §|1><1 , (2a)
| |
oo =5 el =51 (2b)

where |+) := (|0) & [1))/V/2.

Then, we can now define the task of steering distillation
(with respect to Eﬁ"} as target assemblage) as the following
assemblage conversion:

1W—-LOCC
N T (Eg‘)‘})(ng

(Zapx)® , (3)
with unit probability as N — oo and with 0 < r <1 the
distillation rate of the protocol. The initial resource

of the process is given by N independent copies of the
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assemblage X, x, which is represented mathematically
as Zﬁg = {®fv=1 O-a,-\x,-}a],xl,...,a,v.x,\,'

In what follows, we will assume that Alice and Bob share
initially N > 2 copies of the pure nonorthogonal assem-

blage EX’& = {Jiﬁ}a’x, obtained from the state

|@) == a|00) + p[11), (4)

through Z and X Pauli measurements on Alice’s side,
where 0 < # < a < 1 and @ + ## = 1. The assemblage is
then characterized by the components

oy =0)(0. oy =N (5a)

a1 o
"<()\1) = §|0‘+><0‘+ ) 65“) =—la_){a_|, (5b)

2

where |a.) := a|0) £ p|1).

We also consider a dichotomic positive-operator-valued
measure (POVM) M := {M©), M(D} on Bob’s subsystem,
where M@ are bounded operators satisfying M(®) > 0 and
M© 4 M) = 1. We say that M is applied on an assem-
blage 2,y when Bob applies the corresponding POVM on
his quantum state. When outcome @ is obtained, the
assemblage’s components are updated by [15,18]

VM0 )
Ga‘xw - TT[M((")pB] ’

where pg =), G4)x 1s Bob’s reduced state (well defined
by virtue of the no-signalling principle [19,20]).
Introducing the notation K@ :=+vVM®@ so that
M@ = K@TK(@) we can now present our protocol:
Protocol 1: (Local filtering with one-sided qua-
ntum control.) Let Alice and Bob share Zﬁf";@N, with

N > 2, and let M be a dichotomic POVM of elements

, (7a)

K = @m (]. (7b)

a

X0 =§|o><0| + 0

Then, the following steps are executed:
(1)For1 <i < N — 1, Bob measures M on each ith copy

of ZX& and gets an outcome w; € {0, 1}.

2) If w;=1 for all 1 <i<N-1, he sets wy =0
without measuring the last copy; otherwise he sets oy = 1.
Then, he sends the string  := wy, ..., wy to Alice.

(3) Alice gets w. Then, Alice and Bob discard every ith
system for which w; = 1, for all 1 <i < N. The output of
the protocol is given by the remaining assemblages.

The protocol is depicted in Fig. 1(c) for N = 2 copies of
the initial assemblage.

Any steering distillation protocol must guarantee extrac-
tion of at least one such singlet assemblage in the regime of
asymptotically many copies, N — oo. For a finite number
of copies, however, perfect extraction may not be possible
and only an approximation of EEI; is attainable. To
quantify this notion of proximity and have a figure of
merit for the protocol for finite N, we define the following
quantities:

Definition 1.—(Assemblage fidelity.) Let X,y =
{Ga\x}ae[o].xe[m] and E'A\X = {éa\x}ae[o],xe[m] have the same
number of inputs and outputs and act on the same Hilbert
space Hp. We define the assemblage fidelity between Xy x

and B, x as

fA(EA\XaE‘A\X) = min Z f(aa\x’gtdx)v (8)

X€E[m] acpo)

with F(A, B) = Tr[\/VABV/A] the usual state fidelity
between two density matrices A and B on Hjp.

The definition of assemblage fidelity retains many
of the expected properties for a fidelitylike quantity
from its dependence on the usual fidelity F, see the
Supplemental Material (SM) for demonstrations [21]. In
particular, F, is non-negative and F,(Zsx, Eqx) < 1,
with equality holding if and only if X, x = E4x. It should
be remarked that the minimization contained in definition
Eq. (8) is used precisely to preserve these properties and
should be understood as a way of better distinguishing
assemblages that are in fact distinct. See the SM for
details [21].

Assume now that the assemblage X x is defined in the
same space of Zg’&, defined in Egs. (2). Then, we can now
define our figure of merit for the distillation protocol’s
performance:

Definition 2.—(Singlet-assemblage fraction.) Let Ef"}
be the singlet assemblage defined in Egs. (2). We define
the singlet-assemblage fraction for an assemblage
Ziix = {0ax}aep) e With dim(Hp) = 2, as

-7:<1>(2A\x) = fA(2A|X72§)|;()- (9)

With this quantity, we may evaluate if a given protocol
indeed allows extraction of an assemblage that is closer to
the singlet assemblage than initially. Ideally, the singlet-
assemblage fraction should be defined including an opti-
mization over unitaries applied on Bob’s side (or, more
generally, over reversible 1W-LOCCs). This however
enormously complicates its analytical computation even
for the case considered in our results below, where we
observe numerically that the values with and without this
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extra optimization coincide. We now present our main
result, proven in Appendix B in the SM [21].

Theorem 1: (Distillation of Quantum Steering)
Quantum steering can be distilled with the use of
Protocol 1 with rate r = 23> in the asymptotic regime of

infinite copies of the initial assemblage x@ Furthermore,

AlX
in the regime of N copies, with N finite, an assemblage can
be obtained on average which is closer to the singlet

(a)
AlX
V1-4a=pr@ - v,

Experimental realization.—We implemented the local
filtering protocol experimentally using two copies of the
original assemblage. A pair of hyperentangled photons in
polarization and optical path, produced via spontaneous
parametric down-conversion (SPDC), is used to encode the
two copies, one in each degree of freedom (DOF). The
setup is represented in Fig. 2. A 325-nm continuous-wave
He-Cd laser pumps two type-I beta-barium borate (BBO)
crystals in a cross-axis configuration [22], generating
photon pairs centered at 650 nm. Wave plates H, (half)
and Q, (quarter) are set to produce photons in a polari-
zation state close to |a) [Eq. (4)]. We use the encoding
|H) — |0), |V) — |1), where |H) and |V) correspond to
horizontal and vertical polarizations, respectively. Different
values of a are realized by varying the angle on H,. By
keeping only two correlated directions produced in the
SPDC we define the optical path qubits [Fig. 2(b)]. Path-
dependent attenuators are used to make amplitudes match
those of |). With this, we obtain another copy of the initial
state between the parties.

The subsequent stage of the setup, with Alice’s and
Bob’s devices, is illustrated in Fig. 2(c). On Alice’s side,
two black boxes are implemented with half-wave plates
(Hyp, Hpy), quarter-wave plates (Qy ,, Qa,), a beam
displacer (BD,) and a polarizing beam splitter (PBS,).
These components allow implementation of a fixed set of
projections on both DOF utilized [23]. Inputs and outputs
of the boxes are respectively given by the wave plates’
angles and by the photon counts. Conditioning on Bob’s
state is implemented by coincidence detection.

On Bob’s side, local filtering is implemented before
photon detection. This is done with a variable mirror (VM)
whose reflectance and transmittance depend on its position.
The mirror acts only on the lower path on Bob’s side, which
is tailored to be more intense than the upper path. The VM
is set so that transmission of the photon equalizes the
amplitudes of both paths, thus implementing K(©
[Eq. (7a)]. Reflection, on the other hand, corresponds to
K" and completely destroys steering in the path DOF—
polarization is then used to prevent weakening of the final
correlation.

Photon detectors after the VM register the outcomes,
communication to Alice’s side is done also through

assemblage than X, attaining a singlet-assemblage frac-

tion of

(a) (b)

De.. _ell)
Ho 1)@ pums @ |0)
BBO Alice Bob
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FIG. 2. (a),(b) Production of entangled photons via SPDC. The
down-converted light is spectrally filtered to (650 &= 10) nm and
collimated by a lens (not shown in figure), which converts the
photons’ momentum to spatial modes parallel to the pump beam.
Only two pairs of correlated spatial modes are used in the
remainder of the setup, as shown in (b), corresponding to two
additional qubits besides polarization. (c) Setup for quantum
steering distillation. Alice’s interferometer allows for measure-
ments both on polarization and on the spatial DOF and comprises
Alice’s two initial black boxes. On Bob’s side, the amplitude filter
is implemented by the variable reflectivity mirror (VM); reflec-
tivity is tuned so that spatial DOF amplitudes become equalized
when the photon is transmitted. Polarization is ignored and
tomography of spatial mode DOF ensues in the upper branch of
Bob’s setup. Legend for the components: Q—Quarter-wave
plate; H—Half-wave plate; BD—Beam displacer; PBS—Polar-
izing beam splitter; VM—Variable reflectivity mirror. Subindices
indicate to which party (A—Alice, B—Bob) and to which type of
measurement (p—polarization, s—spatial mode) the component
pertains.

coincidence detection. Quantum state tomography of all
assemblage components o, is then realized and steering is
analyzed on the reconstructed assemblage. Fully charac-
terized components Hp;, Op, PBSp;, BDy allow path
mode tomography on the transmitted path; wave plates
Hg ,, Op , and PBSg , on the reflected path allow for
polarization tomography.

The results are shown in Fig. 3. Singlet-assemblage
fractions for the distilled and original assemblages are
shown as function of the population imbalance o — * of
Bob’s reduced state. We also show the singlet-assemblage
fraction for the case of postselection, where only the singlet
assemblage is kept, given occurrence of a successful local
filtering. Distillation with few copies is revealed, consid-
ering the average assemblage obtained by combining
successful and unsuccessful runs of the protocol using
experimentally obtained probabilities for each outcome w.

As defined here, the singlet-assemblage fraction is not a
steering monotone (meaning that it may increase under 1 W-
LOCCs). Hence, another comparison is made using the
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FIG. 3. Singlet-assemblage fraction (top) and LHS robustness

of steering (bottom) as a function of Bob’s reduced state
amplitude imbalance a® — 2. Circles (red) correspond to the

(a)
AlX

(blue) are postselected successfully distilled assemblages, ob-
tained when Bob obtains the outcome @ = 0 on his local filter;
triangles (orange) correspond to the resulting average assemb-
lages obtained by applying Protocol 1 to two copies of the
original assemblage. Successful distillation can be observed as
the values of both measures increase after the process, even for
imbalances as high as 0.81.

original assemblage X | shared as a base for the copies; crosses

steering LHS robustness, which is a proper steering mono-
tone that measures the amount of unsteerable noise that a
given assemblage tolerates before becoming itself unsteer-
able [3,15,16]. This is shown in the bottom part of Fig. 3. The
same qualitative behavior can be observed for the robustness,
with an increase observed for both the average assemblage
and the postselected assemblage. Both observations then
demonstrate the successful experimental distillation of an
assemblage with stronger steering than initially.

Concluding remarks.—We have devised a steering dis-
tillation protocol inspired on the original local-filtering
protocol for entanglement distillation [4], but exploiting
quantum control only on one party. In other words, our
protocol works with local operations assisted by classical
communication from the untrusted part to the trusted one, a
strict subclass of the LOCCs used in entanglement dis-
tillation that meets the natural restrictions of the semi-DI
scenario. In contrast, we note that Ref. [14] also studies a
steering-filtering protocol but to demonstrate steering
superactivation, so it is not only device dependent (exploit-
ing quantum control at both sides) but also probabilistic.
Our protocol concentrates steering deterministically.
Moreover, it works both in the limiting case of an infinite
number of copies of the initial assemblage and in the
nonasymptotic regime. In fact, we have experimentally
demonstrated it for two copies of an input assemblage, each
one encoded in a different degree of freedom (polarization
or spatial) of the same twin photon pair. To the best of our
knowledge, this is the first experimental demonstration of
quantum steering distillation.

Our results offer a number of exciting open problems. For
example, does the converse of steering distillation, i.e.,
dilution, exist? If so, are these two processes reversible? Or
is there a notion of bound steering analogous to bound
entanglement [24]? Finally, in our specific setup the

quantum state underlying the assemblage also has its
entanglement concentrated by the steering distillation pro-
tocol. Is this a generic feature, or can one distill steering
without the underlying device-dependent process distilling
entanglement?
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