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We present a theory of chemokinetic search agents that regulate directional fluctuations according to
distance from a target. A dynamic scattering effect reduces the probability to penetrate regions with high
fluctuations and thus reduces search success for agents that respond instantaneously to positional cues. In
contrast, agents with internal states that initially suppress chemokinesis can exploit scattering to increase
their probability to find the target. Using matched asymptotics between the case of diffusive and ballistic
search, we obtain analytic results beyond Fox colored noise approximation.
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Many motile cells can navigate in concentration gra-
dients of signaling molecules in a process termed chemo-
taxis [1], which guides foraging bacteria to food patches,
immune cells to inflammation sites, or sperm cells to the
egg. Both chemotaxis close to targets and random search in
the absence of guidance cues have been intensively studied;
see Refs. [2–4] for reviews. Yet, navigation at intermediate
distances from a target, where chemical cues provide no
directional information but only indicate the proximity of
a target, have received less attention. The regulation of
speed and persistence of motion as a function of absolute
concentration of signaling molecules is known as chemo-
kinesis [1]. Chemokinesis offers a promising navigation
strategy for artificial microrobots with minimal information
processing capabilities [5,6].
In biological cells, chemotaxis and chemokinesis usually

occur together, making it difficult to disentangle their
effects. At the microscopic scale of cells, molecular shot
noise compromises cellular concentration measurements,
rendering cellular steering responses stochastic at low
chemoattractant concentrations [7]. We can decompose
stochastic steering responses as a superposition of directed
steering and position-dependent directional fluctuations.
As an illustration, we consider a typical chemotaxis

scenario, sperm cells of marine invertebrates [8]. There,
the egg releases a chemoattractant, which establishes a radial
concentration field cðxÞ by diffusion [9]; see Fig. 1(a). Sperm
cells can estimate the direction of the local concentration
gradient∇c, yet the signal-to-noise ratio (SNR) ∼j∇cj2=c of
gradient sensing decreases as a function of radial distance
R ¼ jxj; see Fig. 1(b). A previous, generic model of
chemotaxis in the presence of sensing noise predicts stochas-
tic steering responses with position-dependent directional
fluctuations characterized by an effective rotational diffusion

coefficient DrotðxÞ [9]; see Fig. 1(c). Remarkably, Drot ∼
c=ðcþ cbÞ2 becomes maximal at a characteristic distance
from the target, marking a “noise zone” that incoming cells
have to cross [9,10]. At this distance, absolute chemoattrac-
tant concentrations are above the threshold cb ∼ 10 pM for
sensory adaptation, yet SNR ≪ 1 (for details, see Ref. [9] or
Supplemental Material (SM) [11]).
Motivated by this example, we pose the question of

whether position-dependent directional fluctuations are
beneficial or disadvantageous to find a target. This question
is general: Spatial modulations of speed or directional
fluctuations occur also in spatially inhomogeneous activity
fields that influence the active motion of artificial micro-
swimmers [17], or from the presence of obstacles [18,19].
Recent studies suggest an intriguing effect of position-
dependent motility parameters on search success [17,20],
termed “pseudochemotaxis” [21] in Refs. [22,23].
We emphasize that regulation of speed v ¼ vðxÞ as a

function of position x (termed orthokinesis [1], considered
previously in Refs. [22,23]) and regulation of the effective
rotational diffusion coefficientDrot ¼ DrotðxÞ (klinokinesis
[1], considered here) are equivalent: We can map
orthokinesis on klinokinesis and vice versa, by a position-
dependent time reparametrization of trajectories pro-
portional to vðxÞ−1. Such reparametrization changes
conditional mean first passage times, but not the proba-
bility to find a target.
In this Letter, we develop a theory of chemokinetic

search agents that regulate the level of directional fluctua-
tions as a function of distance from a target. Our model
generalizes active Brownian particles (ABPs), frequently
used as a minimal model for cell motility, e.g., of biological
or artificial microswimmers [24–26]. We characterize a
dynamic scattering effect that reduces the probability to
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penetrate regions with high fluctuations. Using matched
asymptotics between the limit cases of ballistic and
diffusive motion, we develop an analytical theory of this
scattering effect. Scattering always reduces the probability to
find a target compared to a pure ballistic search for ABPs
that respond instantaneously to positional cues. Yet, scatter-
ing substantially increases search success for ABPs with
internal states that are able to suppress chemokinesis until
they came close to the target for the first time, allowing these
agents to realize multiple attempts to hit the target. The
statistical physics of agents with instantaneous response and
those with internal states is fundamentally different: while
the former display a homogeneous mean residence time, this
property is violated in the presence of internal states.
Adaptive active Brownian particles.—We consider an

ABP moving along a trajectory RðtÞ in three-dimensional
space with speed v and rotational diffusion coefficientDrot.
Rotational diffusion causes its tangent t ¼ _R=v to decor-
relate on a timescale τp ¼ lp=v set by the persistence
length lp ¼ v=ð2DrotÞ, where dots denote time derivatives.

Hence, htðt0Þ · tðt0 þ tÞi ¼ expð−jtj=τpÞ [27]. As a min-
imal model of chemokinesis with instantaneous regulation
of motility, we consider ABPs that adjust speed and
rotational diffusion coefficient as a function of position
x, v ¼ vðxÞ and Drot ¼ DrotðxÞ. The steady-state density
distribution for an ensemble of ABPs is independent ofDrot
and inversely proportional to v (i.e., ABPs spend propor-
tionally more time in locations, where they move slower),
with isotropically distributed tangent directions.
Let a single spherical target of radius R0 be located at

R ¼ 0, and v ¼ vðjxjÞ,Drot ¼ DrotðjxjÞ. Because of spheri-
cal symmetry, the time-dependent distanceRðtÞ ¼ jRðtÞj of
a single ABP from the origin and the time-dependent angle
ψðtÞ enclosed by its tangent t and the radial direction eR ¼
−R=R decouple from other coordinates, see SM [11],

_R ¼ −v cosψ ; ð1Þ
_ψ ¼ v

R
sinψ þ

ffiffiffiffiffiffiffiffiffiffiffi
2Drot

p
ξðtÞ þDrot cotψ : ð2Þ

Here, ξðtÞ is Gaussian white noise with hξðtÞi ¼ 0 and
hξðtÞξðt0Þi ¼ δðt − t0Þ.
Example: Directional fluctuations of chemotaxis.—We

consider a chemokinetic ABP with constant speed v and
position-dependent DrotðxÞ as depicted in Fig. 1(c). We
assume Rðt ¼ 0Þ ¼ R2 and random initial directions with
direction angle ψ distributed according to pðψÞ ¼ sinð2ψÞ
for 0 ≤ ψ ≤ π=2, corresponding to the steady-state influx
of ABPs at R2 for random initial conditions outside R2;
see SM [11].
In Fig. 1(d), the trajectory labeled (I) is scattered back as

soon as it encounters an elevated Drot. Indeed, the penetra-
tion probability pðRjR2Þ for such ABPs starting at distance
R2 to reach R before returning to R2 is substantially lower
than for ballistic motion withDrot ¼ 0; see Fig. 1(e). For this
case of instantaneous chemokinesis, directional fluctuations
reduce the probability pðR0jR2Þ to find the target.
In contrast, we may consider an ABP with two internal

states [labeled (S) in Fig. 1(d)], which initially moves
ballistically with Drot ¼ 0 (state 0), and only upon crossing
a boundary at R1 switches on chemokinesis with Drot ¼
DrotðxÞ as in case (I) (state 1). For this two-state chemo-
kinesis, directional fluctuations increase the probability to
find a target; see Fig. 1(e). Next, we consider minimal
models to explain this phenomenon.
Spatially inhomogeneous directional fluctuations cause

dynamic scattering of ABP.—We first consider a minimal
model with constant speed v and rotational diffusion
coefficient DrotðRÞ that is piecewise constant in zones
concentric with the target, see Fig. 2(a):

DrotðRÞ ¼
�
D1 for R < R1ðzone 1Þ
D2 for R ≥ R1ðzone 2Þ: ð3Þ

We illustrate the effect of a spatially inhomogeneous
rotational diffusion coefficient in two special cases, termed

(d) (e)

(c)(b)(a)

FIG. 1. Chemokinesis with position-dependent directional
fluctuations as consequence of chemotaxis at low concentrations.
(a) Radial concentration field cðxÞ established by diffusion from
a source (using parameters for sperm chemotaxis [9]): source (red
dot), isoconcentration lines (dashed). (b) Computed signal-to-
noise ratio (SNR) of chemotaxis decreases as function of radial
distance R from the source. (c) The corresponding effective
rotational diffusion coefficient Drot displays a maximum at a
characteristic distance (dashed), where cðxÞ is still large, but SNR
is low. (d) Simulated trajectory [labeled (I)] of a chemokinetic
ABP subject to DrotðxÞ from (c), corresponding to instantaneous
chemokinesis. A second ABP [labeled (S)] with two-state
chemokinesis initially moves ballistically (state 0), but switches
to chemokinesis (state 1) as in (I) once it reaches a threshold
distance (yellow) for the first time. Shown are two-dimensional
reconstructions of three-dimensional trajectories obtained from
numerical integration of Eqs. (1) and (2). (e) Penetration prob-
ability pðRjR2Þ that an ABP starting at distance R2 reaches
distance R before returning to R2. For instantaneous chemo-
kinesis (I), this probability is lower than for ballistic motion
(dashed). For two-state chemokinesis (S), pðRjR2Þ is higher.
Simulation results (black) compare favorably to our analytic
theory (red). For parameters, see SM [11].
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avoidance and trapping [1]; see Figs. 2(a) and 2(b). ABPs
start at R ¼ R2 with random inward pointing initial
direction angles ψ and terminate once they reach R2 again.
If the ABP increases Drot upon entering zone 1, most

trajectories that enter zone 1 promptly return to zone 2,
being scattered back due to the decrease in directional
persistence; see Fig. 2(a).
Again, the penetration probability pðRjR2Þ for this case

is lower than for ballistic motion, see Fig. 2(a′): most ABPs
avoid zone 1. However, the ensemble-averaged residence
time T ðxÞ at each position x (with units time per volume)
is spatially homogeneous, and equals the value T ∞ for
ballistic motion. This is a direct corollary of the fact that the
steady-state probability density for Eqs. (1) and (2) is
independent of Drot. Elementary geometry gives T ∞ ¼
4=ðvSÞ with S ¼ 4πR2

2 [28].
Thus, the mean residence time of inhomogeneous

persistent random walks is the same as the mean residence
time for ballistic motion. This extends a prominent result
for homogeneous stochastic motion [29,30], also known
as the mean-chord-length property, which found applica-
tions for wave scattering [31] and modeling of neutron

transport [32]. The original proof can be adapted to
inhomogeneous stochastic motion, asserted in Ref. [33].
Related results were discussed for position-dependent
translational diffusion [6,21,34].
Intuitively, although most trajectories are reflected

away from zone 1, a small fraction of trajectories
will penetrate into zone 1 and dwell there an extended
period of time before eventually leaving. Figure 2(a′′)
shows a time-bounded residence time T ðx; t0Þ to find an
ABP at position x at distance R before time t0 [with
limt0→∞T ðx; t0Þ ¼ T ðxÞ].
If the ABP instead increases Drot when leaving zone 1,

trajectories that have just left zone 1 may be scattered back;
see Fig. 2(b). ABPs are “trapped” in zone 1. Concomitantly,
pðRjR2Þ is higher than for spatially homogeneous persis-
tent random walks with D1 ¼ D2 > 0; see Fig. 2(b′).
Again, T ðxÞ ¼ T ∞; see Fig. 2(b′′). Intuitively, although
some trajectories become trapped, many trajectories are
scattered back to R2 before they ever enter zone 1.
The case in Fig. 2(a) corresponds to chemokinetic

avoidance [1]; imagine, zone 1 represents unfavorable
conditions that agents seek to avoid: then, most agents
will leave the unfavorable zone 1 fast, while a small number
will suffer an adverse effect and spend more time in zone 1.
Instantaneous chemokinesis (I) versus two-state chemo-

kinesis (S).—To characterize the role of scattering for target
search, we introduce the return probability pret to reenter
zone 1 after entering zone 2 at R ¼ R1 (with random
outward-pointing initial direction) and analogous zone-
crossing probabilities p1 ¼ pðR0jR1Þ and p2 ¼ pðR1jR2Þ;
see Fig. 3(a). The probability pðR0jR2Þ for ABPs with
instantaneous chemokinesis starting at R2 to hit the target
of radius R0 can be expressed in terms of these zone-
crossing probabilities as a geometric series:

pðR0jR2Þ ≈
X∞
k¼0

p2½ð1 − p1Þpret�kp1: ð4Þ

Here, the kth summand denotes the probability of success-
ful trajectories that cross R1 exactly 2kþ 1 times. The only

(a′) (b′) (c′)

(b″) (c″)(a″)

(a) (b) (c)

FIG. 2. Dynamic scattering of chemokinetic agents. (a) Trajec-
tories entering zone 1 (blue) are scattered back to zone 2 due to a
high rotational diffusion coefficient D1 > 0 in zone 1. (a0)
Penetration probability pðRjR2Þ that an ABP starting at distance
R2 reaches distance R before returning to R2, analogous to
Fig. 1(e): simulation (black), theory (red), ballistic motion
with D1 ¼ D2 ¼ 0 (dashed). (a00) Residence time T ðx; t0Þ at
space position x before time t0 as function of radial distance
R ¼ jxj. By a mean-chord-length theorem, limt0→∞T ðx; t0Þ ¼
T ∞ ¼ ðπR2

2vÞ−1. (b) Same as (a), but with D1 ¼ 0, D2 > 0:
trajectories can become trapped in zone 1 due to inward scattering
of outgoing trajectories at R1. (c) Same as (b), but for two-state
chemokinesis: ABPs initially move ballistically with Drot ¼ 0
(state 0), and switch to chemokinesis withDrot ¼ DrotðxÞ as in (b)
after crossing a threshold distance (yellow) at R1 (state 1). (c0)
The penetration probability is higher compared to ballistic
motion. (c00) The mean residence time is now spatially inhomo-
geneous. Parameters, R1 ¼ R2=2: (a) D1 ¼ 10v=R2, D2 ¼ 0;
(b) D1 ¼ 0, D2 ¼ 10v=R2; reference case (dashed) in
(b0) D1 ¼ D2 ¼ 10v=R2.

(a) (b)

FIG. 3. Analytic theory by matched asymptotics. (a) The
probabilities p1 and p2 to pass zone 1 and 2, respectively, and
the return probability pret at the boundary between zone 1 and 2,
jointly determine the probability pðR0jR2Þ to reach a target of
radius R0 for ABPs starting at R2; see Eq. (4). (b) Trade-off
between p2 (black) and pret (red) as function of D2. Simulation
(dots), limit of high Drot (dotted), ballistic motion [Eq. (5)]
(dashed), matched asymptotics [Eq. (6)] (solid).
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assumption made in deriving Eq. (4) is a stereotypical
distribution of direction angles at zone boundaries.
Equation (4) corroborates that inward scattering at R1

implies effective trapping of trajectories in zone 1, allowing
for multiple attempts to hit the target.
Generally, pi is a monotonically decreasing function

of Di, see Fig. 3(b), with maximal value p∞
i obtained for

ballistic motion:

p∞
i ¼ lim

Di→0
pi ¼

�
Ri−1

Ri

�
2

; i ¼ 1; 2: ð5Þ

Note that pret and p2 both depend on D2, and thus cannot
be optimized independently, see Fig. 3(b): increasing D2

increases scattering of outgoing trajectories (thus increas-
ing pret), yet also increases scattering of incoming trajec-
tories (thus decreasing p2).
An ABP with two internal states can decouple scattering

of incoming and outgoing trajectories. Analogous to
Fig. 1(d), label (S), we assume that ABPs initially move
ballistically with Drot ¼ 0 (state 0). Upon first entering
zone 1, ABPs permanently switch to state 1 and sub-
sequently obey Eq. (3); see Fig. 2(c). Figure 2(c′) demon-
strates a dramatic increase of pðRjR2Þ. Concomitantly,
T ðxÞ is not homogeneous anymore; see Fig. 2(c′′).
Analytical theory.—We derive approximate analytical

expressions for the return probability pret using matched
asymptotics (p1 and p2 are analogous). Results compare
favorably to simulations; see Fig. 2.
An ABP entering zone 2 from zone 1 at time t ¼ 0

initially continues moving in approximately radial direc-
tion, before its direction of motion decorrelates on a
timescale τp¼ð2D2Þ−1. For times t ≫ τp, the ABP exhib-
its isotropic random motion. We treat these two dynamic
phases separately and introduce a crossover time t0
with τp ≪ t0 ≪ D2ðd2=v0Þ2.
For the first phase, we are interested in the penetration

depth hxðtÞi, i.e., the conditional expectation value of
radial position R1 þ x of ABPs that have not yet been
absorbed at R1 at time t. Let QðtÞ be the corresponding
survival probability. In the limit l2 ≪ R1, we can approxi-
mate the absorbing spherical shell at R1 by a plane H.
Using symmetry of renewal processes under reflection
at H, we compute limt→∞hxðtÞiQðtÞ ¼ αl2 with α ¼ 4=3;
see SM [11]. Intuitively, while fewer and fewer ABPs
survive, their mean distance from H diverges
as hxðtÞi ≈ αl2=QðtÞ ∼ αl2ðt=τpÞ1=2.
We now address the second dynamic phase t ≥ t0 and

calculate pret. Those ABPs that have not been absorbed at R1

before t0 will likely be found at a distance x ≫ l2 from R1,
and we may approximate these as diffusive particles. The
probability that a diffusive particle reaches R2 if released at
radial position R between two absorbing spherical shells of
radii R1 and R2 reads pðRÞ ¼ ðR2=RÞðR − R1Þ=ðR2 − R1Þ
[7]. Choosing R ¼ R1 þ hxðt0Þi ≈ R1 þ αl2=Qðt0Þ yields

an asymptotic result for q ¼ 1 − pret as q ≈Qðt0Þp½Rðt0Þ�,
valid for λ2 ≪ ðτp=t0Þ1=2. Here, we introduced the ratios
λi ¼ li=di between the persistence length li ¼ v=ð2DiÞ
inside zone i and zone width di ¼ Ri − Ri−1, i ¼ 1; 2.
We can extend this asymptotic expression to the entire

range 0 < λ2 < ∞ by interpolating with the limit value
q∞ ¼ limλ2→∞1 − pret ¼ 1 for ballistic motion, using the
simple ansatz of a saturation curve q ≈ γλ2q∞=½q∞ þ γλ2�,
with initial slope γ. We find

pret ≈ ð1þ αλ2R2=R1Þ−1; α ¼ 4=3: ð6Þ

Analogously, pi ≈ αλip∞
i Ri−1=ðRip∞

i þ αλiRi−1Þ, i ¼ 1; 2
[recall λi ¼ v=ð2DidiÞ ].
Continuum limit.—By induction, we can generalize the

minimal model of Eq. (3) with n ¼ 2 zones to the case
of n > 2 zones concentric with the origin bounded by
Ri−1 < R ≤ Ri, i ¼ 1;…; n. From Eqs. (4) and (6), we
obtain a recursion relation for pðR0jRiÞ; see SM for details
[11]. In the continuum limit n → ∞, we obtain a differ-
ential equation for pðR0jRÞ, describing the penetration
probability for the case of instantaneous chemokinesis,
where Drot ¼ DrotðRÞ may be an arbitrary function of R:

∂
∂RpðR0jRÞ ¼ −2

p
R
−DrotðRÞ

3

2

p2

v
: ð7Þ

By definition, pðR0jR0Þ ¼ 1. We conclude that for instan-
taneous chemokinesis, the probability to find a target is
always smaller compared to ballistic motion. For two-state
chemokinesis with threshold distance at R1, the penetration
probability equals p∞ðRjR2Þ for R1 ≤ R < R2, and differs
from pðRjR2Þ by a factor p∞ðR1jR2Þ=pðR1jR2Þ > 1 for
R < R1; see Fig. 2(c′).
Discussion.—Using a minimal model of a chemokinetic

agent that regulates its rotational diffusion coefficient Drot
as a function of distance from a target, we explain how
search agents can harness spatially inhomogeneous direc-
tional fluctuations to find targets more efficiently if they
possess internal states.
This chemokinesis strategy exploits a dynamic scattering

effect that scatters agents away from regions where direc-
tional fluctuations are high. Agents that have just missed
the target and move on an outgoing trajectory can thus
become scattered inward again and realize an additional
search attempt. Yet, agents with instantaneous chemo-
kinesis face a trade-off between this beneficial inward
scattering of outgoing trajectories and unwanted outward
scattering of incoming trajectories. Agents can avoid this
trade-off if they suppress chemokinesis when approaching
the target for the first time. In our minimal model, this
strategy is realized by agents with two internal states, which
could be implemented by a bistable switch, see SM [11];
alternatively, sensorial delay, memory, or hysteresis could
serve a similar purpose.
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Scattering is a genuinely dynamic effect. Consequently,
the probability to find a target in spatially inhomogeneous
systems cannot be predicted from mass-action laws on the
basis of ensemble-averaged mean residence times. This
highlights a fundamental difference between the dynamical
and the steady-state behavior of spatially inhomogeneous
active systems [22,23].
The dynamic scattering effect described here explains

the increased target encounter rates previously observed
for a spatially heterogeneous search of particles switching
between ballistic and diffusive runs [20,35], as well as a
search in spatially inhomogeneous activity fields [17,23]
(using the mapping between klinokinesis and orthokinesis,
see Introduction).
Our work connects to a recent interest in composite

search strategies [2,36–39]. While most authors considered
agents that stochastically switch between different levels
of directional fluctuations, switching is triggered by the
proximity to a target in our case, representing a resource-
sensitive composite search [39,40].
In addition to chemokinesis studied here, chemotaxis can

become useful in the ultimate vicinity of the target, where
the signal-to-noise ratio of gradient sensing exceeds one,
thus setting an effective target size. Our theoretical work
suggests that single-molecule sensitivity of chemotactic
cells [41] may in fact be disadvantageous during the initial
approach to a target surrounded by a static, radial concen-
tration field. Single-molecule sensitivity would be advanta-
geous only later, once cells have passed a noise zone, where
the concentration of signaling molecules equals the cell’s
sensitivity threshold. As an experimental test, chemotactic
responses of cells with single-molecule sensitivity could be
compared before and after exposure to high concentrations.
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