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Motivated by the dynamics of particles embedded in active gels, both in vitro and inside the cytoskeleton
of living cells, we study an active generalization of the classical trap model. We demonstrate that activity
leads to dramatic modifications in the diffusion compared to the thermal case: the mean square
displacement becomes subdiffusive, spreading as a power law in time, when the trap depth distribution
is a Gaussian and is slower than any power law when it is drawn from an exponential distribution. The
results are derived for a simple, exactly solvable, case of harmonic traps. We then argue that the results are
robust for more realistic trap shapes when the activity is strong.
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Introduction.—In vitro experiments have probed the
nonthermal (active) fluctuations in an “active gel,” which
is most often realized as a network composed of cross-
linked actin filaments and myosin-II molecular motors [1–
4]. The fluctuations inside the active gel are measured using
the tracking of tracer particles, and was used to demonstrate
the nonequilibrium nature of these systems through the
breaking of the fluctuation-dissipation theorem (FDT) [4].
In these active gels, myosin-II molecular motors generate
relative motion between the actin filaments, through con-
sumption of ATP, and thus drive the athermal random
motion of the probe particles dispersed throughout the
network. Similar motion of tracer particles was observed in
living cells [5,6].
In both the in vitro gels, and in cells, over short times, the

tracer particle seems to perform caged randommotion,while
trapped in the elastic network. On longer times it is observed
that the actin network allows the tracer to perform “hopping”
diffusion, as it makes large amplitude motions [2,5–8],
driven by the same active forces. This large scalemotionwas
treated on a coarse-grained scale in Refs. [6] [9].
Here we explore in more detail the process by which

active forces can drive hopping diffusion in a hetero-
geneous medium. We use a trap model [11] where the
particle is assumed to be trapped in a potential well of
variable depth, representing the structural inhomogeneity
present in the system. The particle is affected by random
active forces, which eventually “kick” the particle from the
well. This event can correspond to the release of the tracer
particle from the confining network, or more generally to
the triggering of some unspecified rearrangement of the
constituents of the system. After each such event, the
particle (system) is locked in a new confining organization,
and a new activated escape process begins.
The distribution of potential well depths determines the

type of hopping diffusion performed by the particle.

Indeed, it is well known that for a thermal system, a
Gaussian distribution of potential depths gives rise to
normal hopping diffusion, while an exponential distribution
of potential depths can give rise to anomalous diffusion:
hx2i ∝ tα, 0 < α < 1. (for a review see Ref. [12]). This
result is a direct consequence of the Kramers escape rate
which is exponential in the depth of the trap. For active
systems the picture can be different [13–15]. Indeed,
recently it was shown for a class of active particles
[16,17] that the escape time from a trap depends on the
detailed structure of the potential [16]. Importantly, it is not
a simply exponential function of the potential depth. By
studying a new class of escape problems appropriate for
active gels we find that the nontrivial behavior of the escape
rate leads to several surprising features. Specifically, we
find that anomalous diffusion can appear even for a
Gaussian distribution of potential depths. Furthermore,
an exponential distribution of potential depths gives rise
to a super-slow diffusion hx2i ∼ eC

ffiffiffiffiffi
ln t

p
, where C is a

positive constant. This result is particularly relevant, since
experiments indicate that the thermal motion of tracer
particles in biopolymer gels is well described by a hopping
model, with anomalous (sub-) diffusion, which therefore
suggest that the distribution of traps is exponential [18].
Active trap model.—We consider a particle in a one-

dimensional trap described by a potential UðxÞ and kicked
randomly by thermal and active forces [19]. The Langevin
equation for the particle’s velocity v (in a simplified one-
dimensional reaction coordinate, with the mass set to one) is

_v ¼ −λvþ fa þ fT −
∂UðxÞ
∂x ; ð1Þ

where λ is the effective friction coefficient. The thermal force
fT is an uncorrelated Gaussian white noise: hfTðtÞfTðt0Þi ¼
2λTBδðt − t0Þ, with TB the ambient temperature, and
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Boltzmann’s constant is set to kB ¼ 1. The active force fa
arises from the independent action ofNm molecular motors,
each motor producing pulses of average force f0 for a
duration τ0p (either a constant or drawn from a Poissonian
process with an average value τ0p, i.e., shot noise). This sets
the persistence time of the active forces, before they
randomly reorient. In the large Nm limit (with f0 appropri-
ately rescaled tomaintain a finiteD) the time evolution of fa
can be approximated by the Ornstein-Ulhenbeck process

_fa ¼ −
1

τ0p
fa þ

ffiffiffiffiffiffiffi
2D
τ0p

s
ξðtÞ; ð2Þ

where ξðtÞ is a standard Gaussian white noise, and
D ¼ Nmhf20i. The amplitude of the active force in this
model has a Gaussian distribution, which naturally arises in
a spatially extended system that has a uniform distribution of
active force sources, even if the individual sources (such as
molecular motors) produce discrete forces (the individual
forces are integrated in such extended systems [20]). Note
that the thermal force, fT is typically much smaller than the
active force and can therefore be ignored in most cases. It
should also be noticed that the amplitude of the white noise
vanishes in Eq. (2) when τ0p → 0 and the model described
therefore differs somewhat from the well-known active
Ornstein-Uhlenbeck process (the AOUP model, see
Ref. [21] and references therein), even if the results for
both models can be easily related.
Note that the AOUP process can be viewed as the limit of

a particle that is affected by a large number of spatially
distributed sources of active forces (such as molecular
motors). These combine to give a force distribution that can
be well approximated by a Gaussian form with a single
relaxation time [19,22]. We expect our results to apply to
more complex temporal correlations (Ref. [23], for exam-
ple) when on long timescales a single relaxation time
dominates. However, a more careful examination of such
correlations remains for future studies.
To analyze the trap model we need to evaluate the escape

rate of the particle from the trapping potential. As stated
above we first do this for the exactly solvable case of a
harmonic potential and then turn to comment on more
general potentials.
Escape from a harmonic trap.—Here we take UðxÞ ¼

kx2=2 and postulate that the particle escapes from the trap
when it reaches x ¼ a. k is expected to be proportional to
the bulk modulus of the gel which depends on the gel
density, cross-linker density, and stiffness of the network
filament. It is well known that the steady-state distribution
of active particles positions, when the potential is
unbounded, is very different from that of an equilibrium
case [19,22,24–30]. Indeed, as we show below the escape
time from the trap also behaves very differently.

The active escape from a single harmonic well of the
model described above was extensively explored (using
numerical simulations and analytic results in certain limits)
in Ref. [22]. In fact, the linearity of Eqs. (1) and (2) allows
for an analytic solution in the limit of deep potential wells
and small diffusion, which is detailed in the Supplemental
Material [31]. One finds that the escape time is given by a
Kramers-like form,

τ0esc ¼ τ00ðkÞeka
2=2Teff ; ð3Þ

where the “effective temperature” Teff , assumed to be small
compared to the potential height, is given by the mean
potential energy

Teff ¼ khx2i ¼ Dð1þ λτ0pÞ
λðλþ kτ0p þ τ0p−1Þ

: ð4Þ

Importantly, Teff depends on the shape of the potential [32].
This implies, in stark contrast to the equilibrium problem
where the escape time grows exponentially in k, that it
grows here exponentially in k2 for large k. This, as we show
below has important implications for the generalized active
trap model. We note that the validity of Eqs. (3) and (4) was
numerically tested in Ref. [22], over a wide range of
parameters.
In fact, as one might expect, the same phenomenology

also appears in the overdamped limit which can be readily
solved. The overdamped limit is obtained by taking the
limit of large friction and neglecting the inertial term in
Eq. (1). Moreover, for simplicity, we assume that fT ≪ fa
and neglect thermal noise. Rescaling time t0 ¼ t=λ, and
τp ¼ τ0p=λ, Eqs. (1)–(2) become

8<
:

_x ¼ − ∂UðxÞ
∂x þ fa;

_fa ¼ − 1
τp
fa þ

ffiffiffiffiffi
2D
τp

q
ξðtÞ:

ð5Þ

Note the model is mathematically equivalent to the standard
AOUPs studied, for example, in Refs. [21,33–36], but with
a noise amplitude which scales differently with τp. For a
harmonic potential one can introduce the standard change
of variable [37] p ¼ −kxþ fa to obtain8<

:
_x ¼ p;

_p ¼ −γp −∇Ueff þ
ffiffiffiffiffiffiffiffiffiffi
2γD
1þτpk

q
ξðtÞ:

These equations describe an equilibrium Brownian particle
in a potential Ueff ¼ kx2=2τp, experiencing a friction
γ¼ð1=τpÞþk, and temperature Teff¼ðD=1þτpkÞ. The
change of variables maps the problem to an equilibrium
one. The standard Kramers law then follows immediately
with the mean escape time from a trap of size a, when the
effective temperature is small, given by
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τesc ¼ τ0ðkÞe½UeffðaÞ=Teff � ¼ τ0ðkÞe½ka2ð1þτpkÞ=2Dτp�; ð6Þ

where τ0ðkÞ is a subexponential correction. Again Teff is an
explicit function of the potential through k. We note that
the steady-state distribution in a harmonic potential was
found previously, using a different method, in Ref. [25].
Curiously, we find that the persistence time τp does not
affect the longtime hopping diffusion [dominated by large
k, Eq. (6)], although it does affect Teff [22].
The main result of Eq. (6), similar to Eq. (3), is that

the mean escape time is exponential in k2. This is in
stark contrast to the standard Arrhenius law for passive
Brownian particles which gives an escape time which is
exponential in k.
We now demonstrate that this new scaling dramatically

affects the dynamics of an active particle in a network of
random traps.We consider a standard trapmodel [11], where
the particle, once escaping from the harmonic well through
an active process, falls into a new trap whose depth is drawn
from a random distribution. For simplicity we initially
assume that the traps are of equal size a so that at each
hop between two traps the particle is displaced by a distance
a. The longtime behavior of the system is dominated by the
distribution of traps of large depth (equivalently of large
stiffness k), so we may reduce Eq. (6) to

lnðτescÞ ≈
k2a2

2D
; ð7Þ

where additional terms do not change qualitatively the
results. We consider two canonical choices for the distri-
bution of trap depths, a Gaussian and an exponential.
Gaussian distribution of trap stiffness.—We first con-

sider a normal distribution of trapping potential depths,
encoded in the local network stiffness k,

PðkÞ ∝ e½−ðka2−k0a2Þ2=σ2E�; ð8Þ

with k0 the stiffness at the distribution peak, and σE the
stiffness variance. For thermal activation it is straightfor-
ward to check that this leads to a log-normal distribution of
trapping times. Therefore the mean escape time is finite and
the motion of the particle in the network is diffusive with a
mean-square displacement growing as t. In contrast, for the
active escape, using Eq. (7), we obtain in the limit of large
τesc that the distribution of trapping times is given by

PðτescÞ ¼ PðkÞ
���� ∂k
∂τesc

���� ∼ 1

τ1þμ
esc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðτescÞ

p ; ð9Þ

with μ ¼ 2Da2=σ2E. This distribution is normalizable, but
has a diverging first moment when μ < 1, which leads to
anomalous diffusion [11]. For what follows, it is useful to
recall how this anomalous diffusion can be obtained from a
simple scaling argument [38] (we comment that another,

similar approach, is to use the framework of a continuous
time random walk, see, for example, Refs. [39–41]).
Consider the total time TN needed for the particle to

perform N step. Assuming that each step takes a time τi
drawn from the distribution (9), and that the random
variables τi are independent, we have TN ¼ P

N
i¼1 τi.

When μ < 1, the distribution Eq. (9) has no average and
the total time TN is dominated by the maximal escape time
τ�. This value can be estimated usingN

R
∞
τ� PðτescÞdτesc ≈ 1.

With the distribution of escape times Eq. (9) we get
N ∼ ðτ�Þμ, which leads to TN ∼ N1=μ. Finally, using hx2i ∼
Na2 one finds that for μ < 1, the distribution of escape times
(9) gives the anomalous behavior

hx2ðtÞi
a2

∼ tμ: ð10Þ
For μ > 1 the argument above implies that motion becomes
diffusive with hx2ðtÞi=a2 ∼ t. For actomyosin gels this limit
of anomalous diffusion corresponds to low active forces,
large stiffness, and large stiffness variance. Note that the
dependence on the persistence time τp cancels out in the
ratio that determines the anomalous regime.
Exponential distribution of trap stiffness.—Next, let us

consider an exponential distribution of energy barriers:
PðΔEÞ ∼ exp ½−ΔE=E0�. For such a distribution the thermal
escape-time distribution is a power law [11], which gives a
diverging first moment, with anomalous behavior similar to
the Gaussian active case described above, for T=E0 < 1. In
passive biopolymer (actin) gels, thermal diffusion of tracer
particles was observed to fit this description of anomalous
subdiffusion [18], suggestive of an exponential trap distri-
bution. We now show that the behavior for the active case is
very different.
For the active hopping, using arguments similar to the

Gaussian case, the exponential distribution of barriers
heights gives the following distribution of escape times
for large times

PðτescÞ ∼
1

τesc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðτescÞ

p e−ða
ffiffiffiffiffi
2D

p
=2E0Þ

ffiffiffiffiffiffiffiffiffiffi
lnðτescÞ

p
: ð11Þ

The above distribution has a diverging mean. Using exactly
the same arguments as for the Gaussian distribution of
stiffness with μ < 1, we get a diffusion process that for long
times grows more slowly than any power law with

hx2ðtÞi
a2

∝ eða
ffiffiffiffiffi
2D

p
=2E0Þ

ffiffiffiffiffiffiffi
lnðtÞ

p
: ð12Þ

This behavior falls in the class of superslow diffusion
process [38], where hx2ðtÞi=tα → 0 as t → ∞, for all α > 0.
In particular, in the limit of t → ∞ the slope of the mean
square displacement approaches zero.
Finally, we note that similar to the case of normal

distribution, we find that the super-slow diffusion is
independent of the persistence time τp, in Eq. (12).
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Coupled trap size and stiffness distribution in a
biopolymer gel.—So far we considered traps of finite
spatial extent a, and an independent distribution of stiffness
values. In a real biopolymer gel, such as cross-linked actin
filaments, the fluctuations in the local stiffness are often
determined by fluctuations in the local concentration of
cross-linkers and lengths of the biopolymer filaments
[42,43]. In these systems the local stiffness k and the mesh
pore size a depends on the cross-linkers density

k ∝ ραc; a ∝ ρ−1=3c ⇒ ΔE ∝ ρα−2=3c ; ð13Þ

where α was found to vary between 1 and 2 [42,43]. The
energy barriers are therefore expected to depend on the
cross-linker’s concentration as a power law in the range
ΔE ∝ ρ1=3c , ρ4=3c .
Obtaining detailed distributions of pore sizes and cross-

linker’s concentration from the experimental data is diffi-
cult. Recent measurements of the pore-size distribution in
an actomyosin gel found it to be similar to a Gaussian
distribution [44]. However such gels are highly hetero-
geneous, evolve over time [45], and are predicted theo-
retically to approach a critical state with power-law
distribution of its structural heterogeneity [46].
Extension to general potentials.—Our results have been

obtained assuming harmonic traps. One might wonder how
general these results are for more general trap shapes. In
Ref. [22] it was shown that the escape rate from a single
potential well does not depend strongly on the shape, for
monotonously increasing potentials and a Gaussian active
noise [Eqs. (5)]. We now discuss in the following the mean
escape time from a general trap for the two limits of the
overdamped model, τp ≪ τU and τU ≪ τp, where τU is
the typical relaxation time inside the trap, and is given by
the order of magnitude of ½∂2UðxÞ=∂x2�.
The limit of small correlation time τp ≪ τU has been

thoroughly studied in the past [24,47]. It has been shown
that Eqs. (5) reduce to the equilibrium escape problem for a
passive particle with an effective temperature Teff ¼ Dτp.
The mean escape time in this limit is thus given by the
classical Arrhenius law with an effective temperature. The
first nonequilibrium correction, for a potential whose
derivative at the escape point is zero, comes at order τp
and depends on the full shape of the trap [24]. One recovers
to leading order the results of the classical thermal trap
model [11], with Teff ¼ Dτp. In particular, the mean escape
time in this limit only depends on the depth of the trap and
not on its shape.
We next consider the interesting regime where the time

τp, related to binding and unbinding a molecular motor, is
still much smaller than the time to escape using a thermal
fluctuation, but much larger than the relaxation time τU
inside a trap. We thus still neglect thermal noise and take
the limit τp ≫ τU. We consider Eqs. (5) with t0 ¼ t=τp

8<
: _x ¼ τpðfa − ∂UðxÞ

∂x Þ;
_fa ¼ −fa þ

ffiffiffiffiffiffiffi
2D

p
ξðtÞ:

ð14Þ

In the limit τp ≫ τU, the position of the particle has to satisfy
fa ¼ ½∂UðxÞ=∂x�. At every time, the particle is in a local
equilibrium state where the active force balances the
potential force. For a general barrier one expects
½∂UðxÞ=∂x� to have a single maximum located at a point
xcr, where ½∂2U=∂x2�ðxcrÞ ¼ 0. Defining themaximal force
that the potential can exert as Fmax¼maxf∂U=∂xg, the
particle needs a force fluctuation that reaches at leastFmax to
escape from the trap. For the stochastic process (2), such a
fluctuation occurs within a typical time

τou ≈ τpe½ðFmaxÞ2=2D�: ð15Þ

Once the particle has crossed the critical point, the force
fa − ½∂UðxÞ=∂x� is strictly positive, and the particle moves
quickly to the escape point, according to the first equation in
(14). The mean escape time for a general trap, in the limit
τp ≫ τU, is given by Eq. (15). The limit of large correlation
time much larger than the thermal escape time from the trap
has been studied in Ref. [22] and leads to a different result.
Equation (15) illustrates the fact that in the large

correlation time limit an active particle is sensitive to the
maximal force it experiences, whereas passive particles are
sensitive to the depth of a trap. This dependence on the
shape of the potential seems to be rather generic for active
particles [16]. As there is no linear dependence between the
maximal force exerted by a potential and its depth, all
equilibrium results relying on the classical Arrhenius law
fail for the active particle. For the particular case of a
harmonic trap presented in this Letter, Fmax ¼ ka, and we
recover the result (7) using Eq. (15). Importantly, one
expects the depth of the potential to be generically
correlated to its maximal slope. This suggests that the
results described above are rather robust. Note that even if
this correlation leads to an escape time of the form
lnðτescÞ ≈ AΔEs, with the above results suggesting s ≥ 2,
A a constant, and ΔE the trap depth, the super-slow
diffusion results remain almost unchanged for an expo-
nential distribution of ΔE, behaving as hx2ðtÞi ∝ eB½lnðtÞ�1=s ,
with B a constant. Furthermore, for a Gaussian distribu-
tion of ΔE one obtains a super-slow diffusion with
PðτescÞ ∼ e−Cðln τescÞ2=s , with C a model dependent constant.
Discussion.—Our key result is that active escape gives

rise to anomalous hopping diffusion even in systems that
have rather uniform energy landscapes. For the case of
energy barriers with a normal distribution, we predict a
regime of anomalous (sub-)diffusion. For exponential
distribution of energy barriers, which can occur naturally
in different self-assembled systems, we predict an even
more extreme behavior: super-slow diffusion. These results
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arise from the quadratic relation between the logarithm of
the mean escape time and the depth of the energy barrier,
unlike the linear relation obtained for thermal activation.
Note that in experimental realizations of active gels the
cross-linkers are dynamic and the system tends to exhibit
viscous flow on very long timescales [1,3,10]. This may
prevent the observation of the longtime regime where the
anomalous or super-slow diffusion appears. However, since
the thermal diffusion was found to be anomalous in
biopolymer gels [18], future studies of the motion of tracer
particles over long times in active actomyosin gels [8]
could probe the super-slow diffusion regime that we
predict. Note that often the active sources, such as molecu-
lar motors, are themselves affected by the elastic restoring
forces of the trap [29], and the consequences of this on the
escape process remain to be explored.
We have neglected thermal noise in our analysis, both

for simplicity and since in many active systems it is much
smaller than the active component (see, for example,
Refs. [7,8]). In the Supplemental Material [31] we
include thermal noise in the calculation, and show
explicitly that at very large values of trap depth the
escape time is controlled by the thermal process. This
gives a cutoff time above which the escape process is
dominated by the thermal noise and the standard behav-
iors of the classical trap model are recovered. These
timescales are, however, very long and most likely very
difficult to observe.
The basic property of the active force that gives rise to

this different activation dynamics is its persistence time.
This means that any process of activated diffusion,
rearrangement, or flow that is driven by forces with a
finite correlation (persistence) time will give rise to the
anomalous dynamics we described. Dynamics that are
driven by such nonthermal forces appear in many non-
equilibrium systems. Moreover, since Gaussian and
exponential distributions of energy barriers are common
in many disordered systems, we find that active (non-
thermal) motion over such an energy landscape can very
easily become anomalous, and exhibit aging behavior.
These results should be relevant to dynamics inside
living cells, artificial active matter, and driven disordered
systems. It will be interesting to see how these results
generalize to more complex active processes, involving
several timescales, and allowing the noise correlations to
change sign.
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