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The 2D Hubbard model with nearest-neighbor hopping on the square lattice and an average of one
electron per site is known to undergo an extended crossover from metallic to insulating behavior driven by
proliferating antiferromagnetic correlations. We study signatures of this crossover in spin and charge
correlation functions and present results obtained with controlled accuracy using the diagrammatic
Monte Carlo approach in the range of parameters amenable to experimental verification with ultracold
atoms in optical lattices. The qualitative changes in charge and spin correlations associated with the
crossover are observed at well-separated temperature scales, which encase the intermediary regime of non-
Fermi-liquid character, where local magnetic moments are formed and nonlocal fluctuations in both
channels are essential.
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Recent developments of quantum emulators based on
ultracold atoms loaded in an optical lattice [1–8] have
enabled accurate experimental realization and probing of
the quintessential single-band 2D Hubbard model of
correlated electrons in solids:

H¼−t
X

hxyi;σ
ðc†xσcyσþH:c:ÞþU

X

x

nx↑nx↓−μ
X

xσ

nxσ; ð1Þ

where cxσ annihilates a fermion with spin σ on the site x,
hxyi implies nearest-neighbor sites, nσðxÞ ¼ c†xσcxσ is the
corresponding number operator, t is the hopping amplitude
(set to unity), U the on-site repulsion, and μ the chemical
potential. Despite seeming simplicity, the model harbors
extremely rich physics, including, e.g., unconventional [9]
and possibly high-temperature superconductivity [10],
while a priori accurate theoretical results in the thermo-
dynamic limit are remarkably scarce [11].
Central among properties of the Hubbard model is the

state of the interaction-induced insulator at half-filling
(hn↑ þ n↓i ¼ 1), when the noninteracting system is a
metal. An important ingredient is the tendency toward
antiferromagnetic (AFM) ordering due to nesting of the
Fermi surface (FS), i.e., the existence of a single wave
vector Q ¼ ðπ; πÞ that connects any point on the FS to
another point on the FS. At U=t ≪ 1, an exponentially
small ∼t expð−2π ffiffiffiffiffiffiffiffi

t=U
p Þ energy gap in charge excitations

emerges due to an exponential increase of the AFM
correlation length [12], despite the absence of long-range
order at any T > 0 [13,14]. At U=t ≫ 1, the charge gap
∼U=2 is due to on-site repulsion, while AFM correlations
develop at much smaller scales ∼4t2=U and are irrelevant
for the insulator. This drastic qualitative difference between

the limiting cases—a local scenario at strong coup-
ling versus that local in the momentum space at weak
coupling—makes physics at intermediate U ∼ t particu-
larly intriguing and challenging to describe reliably.
When extended AFM correlations are explicitly sup-

pressed, a Mott insulator is expected to emerge by a first-
order metal-to-insulator transition [15–25]. In the 2D
Hubbard model (1) currently realized in experiments,
extending correlations make the insulator develop in a
smooth crossover [26–29]. Current quantum emulators
[3,5–8] have already reached the range of temperatures of
the crossover. The structure of spin correlations can be
measuredwith single-site resolution [6,30]. Compressibility
and nonlocal density fluctuations can be directly probed
[31,32]. These techniques provide a powerful toolset to
pinpoint the location of the crossover and characterize the
underlying mechanisms, for which reliable theoretical
results are currently missing. In a broader context, the role
of AFM correlations in non-Fermi-liquid (NFL) physics has
been the subject of extensive research and is widely believed
to be relevant for unconventional superconductivity [33].
Despite the absence of the fermionic sign problem at half
filling, accurate description of the crossover has proven to be
extremely challenging for Monte Carlo methods limited to
finite-size systems due to the substantial size dependence
[27,29]. Recent controlled results [29] by the diagrammatic
determinant Monte Carlo algorithm for the self-energy
(ΣDDMC) [34], whichworks directly in the thermodynamic
limit (TDL), and the large-cluster dynamical cluster
approximation [35] demonstrate that the crossover is non-
trivial and involves a transitional NFL [36] regime with a
partially gapped FS [27,28].
In this Letter, we study with controlled accuracy exper-

imentally observable signatures of the metal-insulator
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crossover in the equal-time spin and charge correlation
functions as well as in potential and kinetic energies.
We employ the connected determinant diagrammatic
Monte Carlo (CDet) algorithm [37] in the TDL and the
approach of Ref. [34] for controlled evaluation of observ-
ables from their diagrammatic series in the strongly
correlated regime. The results are summarized in Fig. 1.
Crossover temperatures are defined as the points where the
derivatives with respect to T of the compressibility κ (T�

ch),
uniform spin susceptibility χunisp (T�

sp), potential energy
εpot—or double occupancy hdi ¼ hn↑n↓i, εpot ¼ Uhdi—
(Tmax;min

pot ), and kinetic energy εkin (T�
kin) change their signs.

At relevant couplings, hdiðTÞ exhibits a maximum (at Tmax
pot )

and a minimum (at Tmin
pot ), and dεkin=dT has a maximum as a

function ofU at Tmax
kin . Below T�

an, T�
n, obtained by ΣDDMC

in Ref. [29], the self-energy becomes manifestly insulator-
like—its imaginary part is lowest at the lowest Matsubara
frequency—at the antinodal k ¼ ðπ; 0Þ and nodal k ¼
ðπ=2; π=2Þ momentum points, respectively. At T ≲ 0.25,
where quasiparticle properties (and thus the notions of
metal, NFL, and insulator) become meaningful [29], NFL
behavior is observed in the region between T�

chðUÞ and
T�
spðUÞ (green shading in Fig. 1). Upon cooling, κ becomes

insulatorlike first at T�
ch, while εpot, εkin, and χ

uni
sp are still of

metallic character [as summarized in Fig. 1(b)], the AFM
correlation length ξ at strong coupling (U ∼ 3) is only as
long as about two lattice constants, and the self-energy does
not yet exhibit insulating behavior anywhere on the FS.
Long-range AFM correlations with ξ≳ 10 develop at a
notably lower T�

sp, below which all studied observables are
insulatorlike. Nonlocal fluctuations are key for the exist-
ence of the transitional NFL, while the changes observed in
this regime, such as restructuring of spatial correlations and
development of the local magnetic moment, enable the
crossover and generically require a range of parameters to
take place.

In the diagrammatic Monte Carlo approach to the
Hubbard model [38,39] one computes numerically exactly
the coefficients of the Taylor-series expansion in U for a
given observable in the TDL. For an order-NV coefficient
of a two-body correlation function this amounts to sum-
ming all connected Feynman diagrams with four fixed
external vertices i, i0, o, o0, the number NV of internal
vertices V, and integrating over all configurations of V. The
CDet [37] algorithm allows us to evaluate the integrand at
an exponential cost using determinantal summation of a
factorial number of diagram topologies [40,41] with a
recursive subtraction of all disconnected diagrams, while
the integration over V can be subsequently performed by
Monte Carlo sampling [34,37,40–43]. For a given con-
figuration i; i0; o; o0; V, the sum of all diagram topologies
aii0oo0 ðVÞ is obtained as a determinant of a matrix con-
structed from noninteracting Green’s functions [40]. The
sum of all connected diagrams cii0oo0 ðVÞ can be found by a
recursive subtraction of disconnected topologies following
Ref. [37],

cii0oo0 ðVÞ ¼ aii0oo0 ðVÞ −
X

S⊊V
cii0oo0 ðSÞa∅ðVnSÞ

−
X

S⊂V
cioðSÞci0o0 ðVnSÞ; ð2Þ

where a∅ðVÞ is the determinantal sum of all closed-loop
diagrams without open ends and cioðVÞ is that of connected
diagrams with only two external vertices. The last term
becomes relevant when the variable whose correlations are
computed has a finite expectation value. In the regime of
interest, the series are convergent; obtaining their coeffi-
cients with the statistical error bar ≲10% at the highest
accessible orders NV ¼ 9–11 allows us to reliably evaluate
the corresponding observables by a controlled extrapola-
tion to infinite order [29,34].
The equal-time density-density (charge) correlator

Cðx − yÞ ¼ hδnðxÞδnðyÞi; ð3Þ

where δnðxÞ ¼ P
σ nσðxÞ − hnσi, provides a direct signa-

ture of insulating behavior via the compressibility
κ ¼ ∂n=∂μ ¼ ðβ=NÞPx;y Cðx − yÞ, with N the number
of lattice sites. Figure 2(a) shows κ as a function of U at
various temperatures. The temperature dependence of κ
gives an indication of the character of the system. In the
metallic regime at small T and U, κ ∝ − lnT is dominated
by the van Hove divergence of the density of states on the
FS, so that ∂κ=∂T ∝ −1=T is negative. At large U, the
system is an insulator with a charge gap and temperature-
activated density fluctuations, so that ∂κ=∂T is positive.
The condition ∂κ=∂T ¼ 0, satisfied at the crossings of
consecutive curves in Fig. 2(a), thus defines the crossover
scale T�

chðUÞ. It is noticeably higher than T�
an, suggesting

that the criterion of an NFL based on emergence of a

FIG. 1. (a) Diagram of the extended metal-to-quasi-
AFM-insulator crossover (see text). (b) Schematic of sign
changes of the observables defining the corresponding crossover
temperatures.
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polelike feature in the self-energy is a strong condition. At
low T, T�

chðUÞ follows qualitatively, albeit systematically
lower, the Néel temperature of the Hartree-Fock approxi-
mation TN

HF [44]. At U, T ≫ t, it approaches its atomic
limit asymptote T�

chðUÞ ≈ 0.3911U.
The local part of the charge correlator Cloc ¼ Cð0Þ is

related to double occupancy, Cloc ¼ 2hdi. Although the
monotonic decrease of κ with U is mainly driven by the
suppression of hdi, T�

ch is substantially enhanced by non-
local fluctuations described by Cnl¼ð1=NÞPx≠yCðx−yÞ
near the crossover. Expressing compressibility as κ ¼
βðCloc þ CnlÞ we find that ∂½βCloc�=∂T ¼ 0 at a lower
temperature ≈T�

spðUÞ, i.e., nonlocal charge fluctuations
lead to the separation between T�

ch and T�
sp. The inset of

Fig. 2(a), where Cloc and Cnl are plotted versus U at
T ¼ 0.2, shows that nonlocal correlations are of the same
order of magnitude as the local ones but different in sign,
suggesting that the behavior of κ follows from a delicate
interplay between the two [25].
As U is increased, the nature of nonlocal charge

correlations changes, Figs. 2(b)–2(d). At weak coupling,
a short-range anticorrelation, the so-called Pauli suppres-
sion, of density fluctuations between lattice sites on differ-
ent sublattices [shown for x ¼ ð1; 0Þ in Fig. 2(b)] originates
from the fermionic statistics. As U is increased, an
anticorrelation within the same sublattice [x ¼ ð1; 1Þ;
ð2; 0Þ in Figs. 2(c)–2(d)] develops, while that between
different sublattices is continuously suppressed. This so-
called correlation hole, exclusively due to interactions,
forms rapidly at small U [45]. However, below T�

chðUÞ
jCðx ¼ ð1; 1Þ; ð2; 0ÞÞj starts saturating and is eventually
suppressed at larger U in the insulating regime. The NFL is
therefore marked by a broad minimum of nonlocal charge

correlations between the sites on the same sublattice. The
net contributions to Cnl from x and y belonging to the same
(CAA

nl ) and different (C
AB
nl ) sublattices are plotted in the inset

of Fig. 2(a), where it is seen that their dependence on U is
qualitatively different.
Magnetic signatures of the crossover are captured by the

equal-time spin correlation function

Sðx − yÞ ¼ hszðxÞszðyÞi; ð4Þ

where szðxÞ ¼ ðn↑ðxÞ − n↓ðxÞÞ=2. Its long-distance
asymptotics define the AFM correlation length ξ via
ð−1ÞxSðxÞ ∝ expð−jxj=ξÞ in the jxj → ∞ limit.
Figure 3, where it is plotted at T ¼ 0.2 and several U,
shows that ξ increases monotonically with U. In the
metallic regime ξ is of order of one lattice spacing. At U ≈
2.5 corresponding to T�

chðUÞ ¼ 0.2, ξ is only ∼2. It should
be noted, however, that the prefactor of expð−jxj=ξÞ
changes by orders of magnitude between ξ ∼ 1 and
ξ ∼ 2, which is the leading effect when the correlations
are so short ranged. The relatively short-range nature of
spin correlations is typical for a strongly correlated NFL
[25,46,47]. At lower T and U the crossover happens at
increasingly larger values of ξ, which makes it increasingly
mean-field-like, resulting in shrinking of the NFL region
and vanishing differentiation between the nodal and anti-
nodal values of the self-energy in Ref. [29]. As we enter the
insulating regime, ξ grows rapidly, becoming of order 10 at
U ¼ 4, T ¼ 0.2. At small U, the correlation length is
anisotropic: ξ and the values of jSðxÞj obtained from the
asymptotics along the diagonal direction x ¼ ðx; xÞ are
notably larger than those along the axis x ¼ ð0; xÞ. The
anisotropy is characteristic of the noninteracting limit and
becomes negligible in the AFM regime at larger U
when ξ ∼ 10.
Development of the quasi-AFM state is seen in the

magnetic structure factor SðqÞ ¼ P
x e

−iqxSðxÞ. Upon
increasing U [Figs. 4(b)–4(d)] or lowering T [Fig. 4(a)],
a sharp peak in SðqÞ develops at q ¼ Q, while the uniform
[q ¼ ð0; 0Þ] structure factor is suppressed. At strong

(a)

(b) (c) (d)

FIG. 2. (a) Compressibility κ versusU for various temperatures.
Arrows mark the crossings between κðUÞ at consecutive T. Inset:
net contributions to κ from density correlations: local (Cloc),
nonlocal within the same (CAA

nl ) and different (CAB
nl ) sublattices.

(b)–(d) Charge correlator Eq. (3) at T ¼ 0.2 for (b) x ¼ ð1; 0Þ,
(c) x ¼ ð1; 1Þ, and (d) x ¼ ð2; 0Þ.

FIG. 3. Spin correlation function SðxÞ for variousU at T ¼ 0.2.
Solid (open) symbols correspond the diagonal (axial) direction.
The linear fits define the correlation length ξ.
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correlations, SðqÞ exhibits intriguing anisotropy: Fig. 4(a)
shows suppression of SðqÞ near the peak along the ðπ; πÞ −
ð0; 0Þ line with cooling, while the shape of SðqÞ along
ðπ; 0Þ − ðπ; πÞ is robust, forming a shoulder near the peak.
Figure 4(d), where SðqÞ is plotted as a color map in the
Brillouin zone (BZ), shows that the shoulder becomes
pronounced at large U and is restricted to a narrow line
along ðπ; 0Þ − ðπ; πÞ, resulting in the vertical cross shape
surrounded by a near-circular halo. The isotropy of ξ is due
to dominance of the isotropic peak.
Being a direct signature of AFM correlations, the relative

magnitude of the peak can be used to define the crossover
to a quasi-AFM state [48]. The T dependence of the uni-
form static spin susceptibility χunisp ¼χspðq¼0;iωn¼0Þ¼
βSðq¼0Þ offers a more visually compelling definition [49].
At high temperatures χunisp follows Curie’s 1=T law. The
renormalized classical regime of long-range AFM fluctua-
tions, realized at low temperatures [44,50], features a χunisp

that increases with T [51,52]. Therefore, χunisp ðTÞ must
exhibit a maximum, seen in the inset of Fig. 4, the location
of which defines T�

sp [49], [53].
At T�

sp, ξ is of order 10, in consistency with its meaning
as the crossover temperature to a quasi-AFM state. For
T ≲ 0.25, where the crossover is meaningful, T�

sp coincides
with T�

n. Thus, below T�
sp ≈ T�

n the whole FS is already
gapped and the system is an insulator. The insulator
boundary is well described by the Néel temperature of
the dynamical mean-field theory (DMFT) TN

DMFT [54],
although the qualitative behavior of χunisp ðTÞ in this regime,
which is controlled by extended spatial correlations, is not
captured by DMFT [55].
The NFL nature of the regime between T�

ch and T�
sp is

further illustrated by energetics. Figure 5(a) exemplifies
hdiðTÞ: for U ≲ 4.5, it features a maximum at Tmax

pot ðUÞ and

a minimum at Tmin
pot ðUÞ (marked by the arrows). hdi drops

upon cooling (∂hdi=∂T > 0) from its high-T asymptote
1=4, reflecting formation of the local magnetic moment
hs2zi ¼ ð1 − 2hdiÞ=4. However, in the region Tmax

pot < T <
Tmin
pot [gray shading in Fig. 1(a)], it grows (∂hdi=∂T < 0), as

expected for a half-filled metal [24,56–58]. Here, an
adiabatic increase of U leads to cooling [57]—in analogy
with the Pomeranchuk effect [59]—via the Maxwell
relation ∂hdi=∂T ¼ −∂s=∂U, where s is the entropy
density. Thus, for Tmax

pot < T < T�
ch, ∂κ=∂T > 0 as in an

insulator but ∂hdi=∂T < 0 as in a metal. The Tmax
pot line is

notably above T�
sp: between these lines the local moment

develops to support the extending AFM correlations, as
above the Néel transition in three dimensions [58]. It is
easily seen that without nonlocal density fluctuations (i.e.,
if Cnl ¼ 0), the relation Tmax

pot < T�
ch would be reversed,

which implies that they are important up until T ∼ 0.5.
The suppression of double occupancy by cooling and the

corresponding reduction of the potential energy near T�
sp is

characteristic of a Slater AFM insulator [12]. In this picture,
it happens at the expense of a kinetic energy rise
[19,24,28,55]. Figure 5(b) shows the numerical derivative
of εkin with respect to T versus U. At low T, increasing U
leads to its sign change, Δεkin=ΔT ¼ 0 defining T�

kinðUÞ.
Below T�

kin,Δεkin=ΔT < 0, as it should in a Slater insulator.
It is instructive that T�

kin ≈ T�
sp, consistently with T�

sp

being the insulator boundary. For T�
sp < T < Tmax

pot the
system is neither a metal nor insulator: both εkin and εpot
are reduced upon cooling. The temperature Tmax

kin at which
ðΔεkin=ΔTÞðUÞ is maximal before dropping to change the
sign marks the crossover between metallic and NFL
behavior: it coincides with T�

ch up to T ∼ 0.35, whereas
at higher T the maximum is observed at decreasing U and
eventually disappears [Fig. 1(a)].

(a)

(b) (c) (d)

FIG. 4. (a) Spin structure factor SðqÞ along the high-symmetry
momentum line. Inset: the uniform static spin susceptibility
as a function of temperature; the dashed line is Curie’s law.
(b)–(d) SðqÞ in the BZ for different U at T ¼ 0.2.

(a)

(b)

FIG. 5. (a) Double occupancy as a function of T for several U.
(b) Numerical derivative of the kinetic energy with respect to T as
a function of U.
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In summary, the transitional NFL behavior is a mani-
festation of the generic separation between the energy
scales for fluctuations in different channels, which vanishes
in the weak-coupling mean-field regime. It can be revealed
in measurements of spin and charge correlations as well as
energetics in the experimentally accessible range of param-
eters T ≲ 0.25 and 2≲ U ≲ 4. Since in this regime the
extended nonlocal fluctuations in both channels play a
crucial role, approaches limited to a finite system, either
theoretical or experimental, require careful control of finite-
size errors [60]. At U ≳ 4 cooling below T�

ch brings the
system from a thermal gas directly into the insulating
regime, where the physics is mostly local, and eventually to
the quasi-AFM state with ξ≳ 10 at the much lower T�

sp. It is
expected [44,61] that at a large U, beyond the scope of
Fig. 1, the nature of the insulating state will change from
Slater to Mott-Heisenberg.
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