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Unambiguous identification of fractionalized excitations in quantum spin liquids has been a long-
standing issue in correlated topological phases. Conventional spectroscopic probes, such as the dynamical
spin structure factor, can only detect composites of fractionalized excitations, leading to a broad continuum
in energy. Lacking a clear signature in conventional probes has been the biggest obstacle in the field. In this
work, we theoretically investigate what kinds of distinctive signatures of fractionalized excitations can be
probed in two-dimensional nonlinear spectroscopy by considering the exactly solvable Kitaev spin liquids.
We demonstrate the existence of a number of salient features of the Majorana fermions and fluxes in two-
dimensional nonlinear spectroscopy, which provide crucial information about such excitations.
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Quantum spin liquids (QSLs) are prominent examples of
correlated topological paramagnets that may arise due to
frustrating spin interactions in Mott insulators [1,2]. The
long-range quantum entanglement and ground state degen-
eracy, which comprises the quantum order, differentiate
QSLs from trivial paramagnets and symmetry-broken
phases [3]. Important manifestations of the quantum order
are the emergent gauge fields and quasiparticles carrying
fractional quantum numbers [4]. Since the quantum entan-
glement is not directly observable, measuring these frac-
tionalized excitations would be an important experimental
footstep to identify quantum spin liquids. One of the most
powerful probes in magnetism, the dynamical spin struc-
ture factor measured in inelastic neutron scattering, how-
ever, shows only a broad continuum as the spin-flip
involves a multitude of fractionalized excitations. The
absence of sharp signatures has hampered the progress
in the discovery of quantum spin liquids.
In this Letter, we consider two-dimensional nonlinear

spectroscopy as a tool to detect distinctive signatures of
fractionalized quasiparticles in quantum spin liquids. The
current work is motivated by a previous work that shows
how the domain wall excitations in the transverse field Ising
model can clearly be detected in two-dimensional THz
spectroscopy [5]. Here we consider the exactly solvable
Kitaev spin liquids on the honeycomb lattice [6] and
investigate the signatures of Majorana fermions and fluxes
in two-dimensional spectroscopy. We consider two mag-
netic-field pulses separated by time τ1 and measuring the
nonlinear part of the induced transient magnetization at later
time τ2 þ τ1. The two-dimensional spectroscopy is repre-
sented by two frequencies corresponding to τ1 and τ2. The
response consists of nonlinear susceptibilities, some of
which correspond to the out-of-time-order correlators of

the magnetization [7]. We show that the third-order non-
linear susceptibilities can give rise to clear signatures of the
Majorana fermions and fluxes in the Kitaev spin liquids. We
explain how one could obtain important information about
such excitations from the output of the two-dimensional
spectroscopy. Our main results are shown in Fig. 1.
Model.—On a honeycomb lattice with 2N number of

sites, we consider Kitaev’s spin-1
2
Hamiltonian with the

isotropic strength of the bond-directional interactions [6],

Ĥ ¼ −
X

x bond

σ̂xj σ̂
x
k −

X

y bond

σ̂yj σ̂
y
k −

X

z bond

σ̂zjσ̂
z
k; ð1Þ

where σ̂x;y;zj are the Pauli operators at site j. The model has

a constant of motion Ŵp ¼ σ̂x1σ̂
y
2σ̂

z
3σ̂

x
4σ̂

y
5σ̂

z
6 ¼ �1 for each

hexagonal plaquette p, and we say there is a static Z2 flux
at p when Ŵp ¼ −1.
By representing the Pauli operators in terms of Majorana

fermions, σ̂αj ≐ ibαj cj, we can rewrite the model as Z2

gauge theory coupled to itinerant Majorana fermions,

H̃ ¼
X

α bond

iûαjkcjck ⇒ H̃u ¼
X

p

εp

�
a†pap −

1

2

�
; ð2Þ

where ap represents the normal-mode complex fermions.
The model is exactly solvable because the emergent Z2

gauge fields ûαjk ≡ ibαj b
α
k commute with H̃ and themselves

so that the Hilbert space is factorized into the gauge
(flux) sector and the matter fermion sector, H ¼ HF ⊗
HM. Hence, for a given gauge configuration jFi ¼
jfuαjk ¼ �1gi ∈ HF, H̃ is reduced to a quadratic
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Hamiltonian H̃u for the itinerant Majorana fermion c,
whose eigenstates jMi span the matter fermion sector HM.
Two-dimensional spectroscopy.—To probe the fraction-

alized excitations of the Kitaev spin liquid, we consider a
nonlinear magnetic resonance spectroscopy with two
linearly polarized, spatially uniform pulses separated by
time τ1,

BðtÞ ¼ B0ẑδðtÞ þ B1ẑδðt − τ1Þ; ð3Þ

where the two incident pulses B0 and B1 arrive at the
system at t ¼ 0 and t ¼ τ1, respectively [5,8]. For sim-
plicity, here we consider the case where the incident pulses
are all polarized along the ẑ direction. These magnetic
fields linearly couple to the local moments ĤtotðtÞ ¼ Ĥ −P

j B
zðtÞσ̂zj ¼ Ĥ − BzðtÞM̂z and induce finite transient

magnetization M̂z
01ðtÞ measured at later time t ¼ τ2 þ τ1.

To discard the leading contributions from the linear
response, two subsequent experiments measure M̂z

0ðtÞ
and M̂z

1ðtÞ due to only a single pulse B0 or B1, respectively.
The nonlinear induced magnetization defined as M̂z

NLðtÞ ¼
M̂z

01ðtÞ − M̂z
0ðtÞ − M̂z

1ðtÞ at later time t ¼ τ1 þ τ2 depends
only on the nonlinear dynamical responses [5],

Mz
NLðτ1 þ τ2Þ=2N
¼ χð2Þ;zzz ðτ2; τ1ÞBz

1B
z
0 ð4Þ

þ χð3Þ;zzzz ðτ2; τ1; 0ÞBz
1B

z
0B

z
0 ð5Þ

þ χð3Þ;zzzz ðτ2; 0; τ1ÞBz
1B

z
1B

z
0 þOðB4Þ; ð6Þ

where time-dependent perturbation theory gives the nth-
order susceptibility [7] (we choose the unit ℏ ¼ 1),

χðnÞ;zz;…;zðτn;…; τ1Þ ¼
in

2N
h½½…½M̂zðτn þ � � � þ τ1Þ;

M̂zðτn−1 þ � � � þ τ1Þ�;…�; M̂zð0Þ�i: ð7Þ

Second-order susceptibility.—The second-order suscep-

tibility χð2Þ;zzz ðτ2; τ1Þ can be calculated from the three-point
correlation functions [7],

χð2Þ;zzz ðτ2; τ1Þ ¼
i2

N

X2

l¼1

Re½QðlÞ;z
zz ðτ2; τ1Þ�; ð8Þ

where

Qð1Þ;z
zz ðτ2; τ1Þ ¼ hM̂zðτ2 þ τ1ÞM̂zðτ1ÞM̂zð0Þi; ð9Þ

Qð2Þ;z
zz ðτ2; τ1Þ ¼ −hM̂zðτ1ÞM̂zðτ2 þ τ1ÞM̂zð0Þi: ð10Þ

Formally, we can insert the resolution of identityP
P jPihPj ¼ 1 and decompose the three-point function

into a sum of products of three matrix elements weighted by
phase factors containing the dynamical information. In
general,

hM̂zðtÞM̂zðt0ÞM̂zð0Þi ¼
X

jkl

X

PQ

hGjσ̂zjjPihPjσ̂zkjQi

× hQjσ̂zl jGieiðEG−EPÞtþiðEP−EQÞt0 ;

ð11Þ

FIG. 1. Two-dimensional Fourier spectrum of the third-order

susceptibilities (a) χð3Þ;zzzz ðω2;ω1; 0Þ and (b) χð3Þ;zzzz ðω2; 0;ω1Þ show
the sharp vertical line signals at the two-flux gap, ω1 ¼ E2 − E0.

(b) χð3Þ;zzzz ðω2; 0;ω1Þ has one sharp diagonal signal for the

Majorana fermions from Rð3Þ;z
zzz and two diagonal signals from

Rð1Þ;z
zzz and Rð4Þ;z

zzz . The two diagonal signals from Rð1Þ;z
zzz and Rð3Þ;z

zzz

are extrapolated to finite ω2 intercept at the four-flux gap
�ðE4 − E0Þ, which hints at the four-flux intermediate states of
the perturbative processes.
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where jPi and jQi are the energy eigenstates, and jGi is the
ground state. Since the spin operator σ̂zj at a z bond

anticommutes with Ŵp at the plaquettes sharing the z
bond, jPi has a pair of two adjacent fluxes. As σ̂zk can either
annihilate the existing two-fluxes or create two new fluxes,
jQi has either zero flux or two nonadjacent fluxes or four
fluxes, which cannot be connected to the zero-flux state jGi
by the single spin operator σ̂zl. Therefore, the second-order
susceptibility should be zero under the z-polarized pulses.
Third-order susceptibilities.—With the vanishing

second-order susceptibility, the third-order responses deter-
mine the outcome of the nonlinear spectroscopy. The third-
order susceptibilities in Eqs. (5) and (6) are calculated from

the four-point correlation functions Rðl¼1;2;3;4Þ;z
zzz , which are

expanded from the nested commutators in Eq. (7) [7]:

χð3Þ;zzzz ðτ2; τ1; 0Þ ¼
1

N

X4

l¼1

Im½RðlÞ;z
zzz ðτ2; τ1; 0Þ�; ð12Þ

χð3Þ;zzzz ðτ2; 0; τ1Þ ¼
1

N

X4

l¼1

Im½RðlÞ;z
zzz ðτ2; 0; τ1Þ�; ð13Þ

where

Rð1Þ;z
zzz ðt3; t2; t1Þ
¼ hM̂zðt1ÞM̂zðt2 þ t1ÞM̂zðt3 þ t2 þ t1ÞM̂zð0Þi; ð14Þ

Rð2Þ;z
zzz ðt3; t2; t1Þ
¼ hM̂zð0ÞM̂zðt2 þ t1ÞM̂zðt3 þ t2 þ t1ÞM̂zðt1Þi; ð15Þ

Rð3Þ;z
zzz ðt3; t2; t1Þ
¼ hM̂zð0ÞM̂zðt1ÞM̂zðt3 þ t2 þ t1ÞM̂zðt2 þ t1Þi; ð16Þ

Rð4Þ;z
zzz ðt3; t2; t1Þ
¼ hM̂zðt3 þ t2 þ t1ÞM̂zðt2 þ t1ÞM̂zðt1ÞM̂zð0Þi: ð17Þ

Similar to the three-point function in Eq. (11), we can
decompose the four-point functions using the resolution of

identity. For example, Rð3Þ;z
zzz ðτ2; 0; τ1Þ becomes

Rð3Þ;z
zzz ðτ2; 0; τ1Þ
¼ hM̂zð0ÞM̂zðτ1ÞM̂zðτ2 þ τ1ÞM̂zðτ1Þi
¼

X

jklm

X

PQR

hGjσ̂zjjPihPjσ̂zkjQihQjσ̂zl jRihRjσ̂zmjGi

× eiðEP−EQÞτ1þiðEQ−ERÞðτ2þτ1ÞþiðER−EGÞτ1 : ð18Þ

Since each spin operator flips two adjacent fluxes, jPi
and jRi must belong to the two-flux sectors while jQi
can be either the zero-flux or nonadjacent two-flux or
four-flux state. The matrix elements for the spin operators
can be calculated by rewriting bαj Majorana fermions
in terms of the complex bond fermions [9–12]. The
detailed calculations can be found in the Supplemental
Material [13].
Although the above decomposition is exact, we cannot

sum over an infinite number of energy eigenstates jPi,
jQi, jRi. Hence, we approximate the correlation functions
by truncating the summation up to intermediate states with
single matter fermion [10,11]. Since each spin excitation
accompanies one c Majorana fermion, we consider the
two-flux states jPi and jRi with one matter fermion and
the matter vacuum four-flux state jQi [14]. This single
matter fermion approximation is known to be extremely
successful to calculate the dynamical spin structure factor
for the Kitaev spin liquid; 97.5% of the total weight of
response can be captured by the one fermion response
[10]. The approximation takes advantage of the vanishing
density of states of the Kitaev spin liquid at zero energy.
Small perturbations would not introduce dramatic recon-
figuration of the matter fermions because only few states
are accessible at low energy.
Results.—We compute the real-time four-point correla-

tion functions on a periodic lattice with 125 × 125
unit cells. Two-dimensional Fourier transform of the
third-order susceptibilities (Fig. 1) and the four-point
correlation functions (Fig. 2) are the main results of
our work. Here we exclude the case jQi ¼ jGi in
Eq. (18) where the four-point function becomes
nothing but a product of the two two-point functions,
e.g., hσ̂zjσ̂zkσ̂zl σ̂zmi ¼ hσ̂zjσ̂zkihσ̂zl σ̂zmi, which can yield physi-
cally inconsistent results within the single matter fermion
approximation.
There are three distinctive features in the third-order

susceptibilities in Fourier space (Fig. 1). First, both

χð3Þ;zzzz ðω2;ω1; 0Þ and χð3Þ;zzzz ðω2; 0;ω1Þ, which are the

Fourier transforms of χð3Þ;zzzz ðτ2; τ1; 0Þ and χð3Þ;zzzz ðτ2; 0; τ1Þ,
respectively, exhibit sharp vertical line signals at the two-

flux gap, ω1 ¼ E2 − E0. Second, χ
ð3Þ;z
zzz ðω2; 0;ω1Þ has three

extended diagonal signals. Third, if we extrapolate these
diagonal signals to ω1 ¼ 0, two of the three have an ω2

intercept equal to the four-flux gap �ðE4 − E0Þ, i.e., there
are overall shifts in these two diagonal signals.
While the results in Figs. 1 and 2 are the direct

Fourier transforms of the real-time correlation functions
[13], we can identify which processes are responsible
for these distinctive signals in the susceptibilities from
the formal analytic expressions of the Fourier trans-
formed correlation functions. For example, the Fourier

transformation of Rð3Þ;z
zzz ðτ2; 0; τ1Þ [Eq. (18)] can be

written as
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Rð3Þ;z
zzz ðω2; 0;ω1Þ
¼ � � � þ

X

j≠k

X

PQR

hGjσ̂zjjPihPjσ̂zkjQihQjσ̂zkjRihRjσ̂zjjGi

×
1

4
δðω1 þ E2 þ εP − E0Þδðω2 þ E4 − E2 − εRÞ

þ
X

j≠k

X

PQR

hGjσ̂zkjPihPjσ̂zjjQihQjσ̂zkjRihRjσ̂zjjGi

×
1

4
δðω1 þ E2 þ εP − E0Þδðω2 þ E4 − E2 − εRÞ;

ð19Þ

where En is the vacuum energy of the n-flux state, εPðRÞ is
the matter fermion energy, and the other contributions
which cannot be written in terms of the delta functions
are in (� � �). The delta function pieces would show no
signal for −ðE2 − E0Þ < ω1 < 0. Similarly, the complex

conjugate pair Rð3Þ;z
zzz ðω2; 0;ω1Þ has no weight in

0 < ω1 < E2 − E0. This is nothing but the well-known
spin gap for spin excitations [10]. If the first pulse B0 does
not transfer enough energy to excite two adjacent fluxes,
the Kitaev spin liquid remains in the ground state. Hence,
for finite nonlinear responses, the first pulse B0 must
transfer energy greater than the two-flux gap E2 − E0.

Another important feature, the shifted diagonal in Fig. 1(b),

also comes from theRð3Þ;z
zzz ðω2; 0;ω1Þ [Fig. 2(e)].When εP ¼

εR ¼ ε, note that the matrix element hGjσ̂zjjPihPjσ̂zkjQi×
hQjσ̂zkjRihRjσ̂zjjGi ¼ jhGjσ̂zjjPihPjσ̂zkjQij2 ≥ 0. Hence, the
summation over sites

P
j≠k, equivalently the summation over

all different four-flux configurations jQi excited by σ̂zj and σ̂zk,
results in only constructive interference. Thereforewe get the
strongly enhanced signal when

ω1 ¼ E0 − E2 − ε < 0; ð20Þ

ω2 ¼ E2 − E4 þ ε ¼ −ω1 − ðE4 − E0Þ; ð21Þ

which corresponds to the shifted diagonalwith the slopeof−1
and the ω2 intercept −ðE4 − E0Þ. According to Eq. (20), the
domain of the line is determined by the single matter fermion
bandwidth and the two-flux gap, and this is confirmed by
Figs. 1(b) and 2(e).
Following a similar logic, we can understand two-flux

gaps and the other two coherent diagonal signals coming

from Rð1Þ;z
zzz ðω2; 0;ω1Þ and Rð4Þ;z

zzz ðω2; 0;ω1Þ, which have
contributions with the constraints in the sum over inter-
mediate states via δðω1þE0−E2−εRÞδðω2þE4−E2−εRÞ
and δðω1 þ E0 − E2 − εRÞδðω2 þ E0 − E2 − εPÞ, respec-

tively. Rð1Þ;z
zzz ðω2; 0;ω1Þ yields the shifted diagonal

FIG. 2. Two-dimensional Fourier spectrum of the four point correlation functions. Here F is the Fourier transforma-

tion. (a) ImF ½ImRð1;2Þ;z
zzz ðτ2; τ1; 0Þ� (b) ImF ½ImRð3Þ;z

zzz ðτ2; τ1; 0Þ� (c) ImF ½ImRð4Þ;z
zzz ðτ2; τ1; 0Þ� (d) ImF ½ImRð1Þ;z

zzz ðτ2; 0; τ1Þ�
(e) ImF ½ImRð2;3Þ;z

zzz ðτ2; 0; τ1Þ� (f) ImF ½ImRð4Þ;z
zzz ðτ2; 0; τ1Þ�
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ω2 ¼ ω1 − ðE4 − E0Þ, and Rð4Þ;z
zzz ðω2; 0;ω1Þ gives ω2 ¼ ω1

from the constructive interference with εP ¼ εR
for ω1 ≥ E2 − E0.
Conclusion.—In this work, we have demonstrated how

two-dimensional spectroscopy can be used to obtain useful
information about fractionalized excitations in the Kitaev
spin liquids, where the single spin-flip process excites a
Majorana fermion and two fluxes in adjacent plaquettes.
The spectroscopic signatures as a function of two frequen-
cies, ω1 and ω2, corresponding to the delay time of two
successive magnetic pulses and the time of measurement,
offer a clear identification of both the Majorana fermions
and flux excitations. We demonstrated that the two-flux gap
appears in ω1 and the shifted diagonal signal in the ω1 − ω2

plane has an ω2 intercept at the four-flux gap. Most
importantly, the presence of the sharp diagonal signals is
the direct consequence of the itinerant Majorana fermions.
The domain of finite response in the two-frequency ω1 −
ω2 plane is determined by a number of stringent conditions,
which makes it possible to identify clear signatures of
fractionalized excitations. It will be interesting to extend
our work to other theoretical models of quantum spin
liquids, that are not exactly solvable. Furthermore, the
results reported here may be tested in a number of candidate
materials for the Kitaev spin liquids [15–21]. We expect our
results will shed significant light on the identification of
fractionalized excitations and quantum spin liquids.
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