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We investigate phonon spin transport in an insulating ferromagnet–nonmagnet–ferromagnet hetero-
structure. We show that the magnetoelastic interaction between the spins and the phonons leads to nonlocal
spin transfer between the magnets. This transfer is mediated by a local phonon spin current and
accompanied by a phonon spin accumulation. The spin conductance depends nontrivially on the system
size, and decays over millimeter length scales for realistic material parameters, far exceeding the decay
lengths of magnonic spin currents.
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Introduction.—One of the main goals of the field of
spintronics is achieving long-range spin transport through
electrical insulators [1,2]. Up to now, the main focus of this
research is on magnetic insulators, in which the spin is
carried by spin waves (or magnons) that are the elementary
excitations of the magnetic order parameter. However, it
was shown recently that the magnetization dynamics in a
ferromagnet can even inject a spin current into an adjacent
nonmagnetic insulator [3], analogous to the spin pumping
at the interface of a ferromagnet and a normal metal [4].
In this case, the spin is carried by transverse acoustic
phonons with circular polarization [3,5–8]. A long-range
exchange coupling that was observed in a ferromagnet-
semiconductor hybrid structure was similarly interpreted in
terms of spin transfer by circularly polarized phonons [9].
This raises the possibility of using phonon currents to
transfer spin in (non-)magnetic insulators. Indeed, An et al.
have found that phonons in nonmagnetic gadolinium-
gallium garnet (GGG) mediate a coherent coupling
between two yttrium-iron garnet (YIG) films that are half
a millimeter apart [10]. In their experiment, An et al.
coherently excited the ferromagnetic resonance (FMR) of a
YIG film with a microwave field, which affected the
coherent FMR dynamics of a second YIG film separated
from the first by a nonmagnetic GGG spacer. This coupling
is interpreted in terms of a phonon spin current, with a
propagation length that surpasses the analogous magnon
propagation length by several orders of magnitude because
of the low acoustic damping in these materials. In view of
possible spintronics applications, it would be desirable to
drive the (phonon) spin current electrically instead of via a
microwave field, e.g., by exciting incoherent magnons via
an electronic spin accumulation in a metallic lead [1,2,4].

In this work, we calculate the incoherent spin transport in
an insulating ferromagnet–nonmagnet–ferromagnet heter-
ostructure that is driven by a difference in magnon spin
accumulation between the magnets, as depicted in Fig. 1.
We assume that the magnets are attached to metallic leads
with fixed electronic spin accumulations μL=R that act as
chemical potentials for the magnons [11]. The metallic
contacts are furthermore assumed to be small enough that
they do not influence the phonon modes in the hetero-
structure. We find that the magnetoelastic interactions
between magnons and phonons lead to finite phonon spin
accumulations in all three layers, and show that a local
phonon spin current mediates nonlocal spin transfer
between the two ferromagnets over macroscopic distances.
Theoretical description.—We consider a heterostructure

consisting of a nonmagnetic insulator of length L sand-
wiched between two identical magnetic insulators of

FIG. 1. Heterostructure consisting of a nonmagnetic insulator
of length L sandwiched between two identical magnetic insula-
tors of length d. The left and right spins interact via the phonons
in the nonmagnetic insulator that may support a finite spin current
between the magnets. The magnon spin accumulations in the
magnets are parametrized with magnon chemical potentials μL=R.
These chemical potentials are generated by metallic leads (not
shown) that are attached to the magnets.

PHYSICAL REVIEW LETTERS 124, 117201 (2020)
Editors' Suggestion Featured in Physics

0031-9007=20=124(11)=117201(6) 117201-1 © 2020 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.117201&domain=pdf&date_stamp=2020-03-18
https://doi.org/10.1103/PhysRevLett.124.117201
https://doi.org/10.1103/PhysRevLett.124.117201
https://doi.org/10.1103/PhysRevLett.124.117201
https://doi.org/10.1103/PhysRevLett.124.117201


length d, see Fig. 1. We also assume that the magnetizations
in both magnets are parallel to each other and to the phonon
propagation direction, which maximizes the magnetoelastic
phonon pumping [3]. In this setup, the spin of the left and
right magnets interacts with the elastic lattice displacement
field uðrÞ via the magnetoelastic Hamiltonian [12]

Hme ¼
1

s2
X
X¼L;R

Z
V
d3r

X
αβ

BαβsX;αðrÞsX;βðrÞϵαβðrÞ; ð1Þ

where α and β run over the three spatial components x, y, z;
s and V are the saturation spin density and volume of both
magnets, sL=RðrÞ is the local spin density, and ϵαβðrÞ ¼
1
2
½∂uβðrÞ=∂rα þ ∂uαðrÞ=∂rβ� is the linearized strain tensor.

Bαβ ¼ δαβBk þ ð1 − δαβÞB⊥ are the magnetoelastic con-
stants of an isotropic system. Focusing on the uniform
macrospin modes of both magnets, we write sL=RðrÞ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs=2VÞp ðeþψ†

L=R þ e−ψL=RÞ þ ezs, where e� ¼ ex � iey
are circularly polarized transverse basis vectors, and ψL=R

and ψ†
L=R are destruction and creation operators for the

macrospin magnon modes that satisfy the bosonic com-
mutation relations ½ψX;ψ

†
X0 � ¼ δX;X0 . In this case the mag-

netoelastic Hamiltonian (1) reduces to

Hme ¼
B⊥ffiffiffiffiffiffiffiffi
2sd

p fψ†
Leþ · ½uðz ¼ 0Þ − uðz ¼ −dÞ�

þ ψ†
Reþ · ½uðz ¼ Lþ dÞ − uðz ¼ LÞ� þ H:c:g: ð2Þ

Here, uðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiðd=VÞp R
dx

R
dyuðrÞ is the normalized

average of the displacement field on the device cross
section, which we assumed to be large compared to the
thickness d of the magnets. Note that the magnetoelastic
coupling (2) only enters via boundary conditions, and
that the macrospin magnons only couple to the circu-
larly polarized transverse phonon fields u�ðzÞ ¼ u†∓ðzÞ≡
e� · uðzÞ. These phonons actually carry the internal angular
momentum, or phonon spin [3,5–8], Lz ¼

R
dzlzðzÞ, with

the phonon spin density

lzðzÞ ¼ ez · huðzÞ × ρðzÞ∂tuðzÞi ð3Þ

¼ ρðzÞImhu†þðzÞ∂tuþðzÞi; ð4Þ

where ρðzÞ is the local mass density. We can thus interpret
the magnetoelastic Hamiltonian (2) in terms of spin transfer
between the magnetic and elastic subsystems.
To investigate the spin transport in the heterostructure

depicted in Fig. 1, we employ semiclassical stochastic
differential equations, which is, however, equivalent to a
fully quantum nonequilibrium Green’s function approach
in the linear regime [13]. For an elastically isotropic
medium, we therefore consider the equations of motion

∂tuþðz; tÞ ¼ ρ−1ðzÞπþðz; tÞ; ð5aÞ

∂tπþðz;tÞ¼∂z½μðzÞ∂zuþðz;tÞ�−2ηðzÞπþðz;tÞ

−
2B⊥ffiffiffiffiffiffiffiffi
2sd

p ψLðtÞ½δðzÞ−δðzþdÞ�

−
2B⊥ffiffiffiffiffiffiffiffi
2sd

p ψRðtÞ½δðz−L−dÞ−δðz−LÞ�; ð5bÞ

where πþðz; tÞ is the momentum density conjugate to
uþðz; tÞ, and ρðzÞ, μðzÞ, and ηðzÞ are the local mass density,
shear modulus and elastic damping constant. For −d <
z < 0 and L < z < Lþ d, they are given by ρðzÞ ¼ ρ,
μðzÞ ¼ ρc2⊥, and ηðzÞ ¼ η, whereas for 0 < z < L they are
ρðzÞ ¼ ρ̃, μðzÞ ¼ ρ̃c̃2⊥, and ηðzÞ ¼ η̃, with the transverse
sound velocities c⊥ and c̃⊥ in the magnetic and non-
magnetic insulators. The macrospin magnon modes are
governed by

ð1þ iαG þ iαspÞi∂tψLðtÞ ¼
�
ωFM þ iαsp

μL
ℏ

�
ψLðtÞ

− hGLðtÞ − hspL ðtÞ þ
B⊥

ℏ
ffiffiffiffiffiffiffiffi
2sd

p ½uþð0; tÞ − uþð−d; tÞ�; ð6aÞ

ð1þ iαG þ iαspÞi∂tψRðtÞ ¼
�
ωFM þ iαsp

μR
ℏ

�
ψRðtÞ

− hGRðtÞ − hspR ðtÞ þ
B⊥

ℏ
ffiffiffiffiffiffiffiffi
2sd

p ½uþðLþ d; tÞ − uþðL; tÞ�:

ð6bÞ

Here, ωFM is the FMR frequency, αG the Gilbert damping
constant, and αsp ¼ g↑↓=4πsd the Gilbert damping
enhancement due to spin pumping to the metallic leads,
with the spin-mixing conductance g↑↓ [14]. Furthermore,
hG=spL=R ðtÞ ¼ ð1=2πÞ R dωe−iωthG=spL=R ðωÞ are noise fields that
satisfy the quantum fluctuation-dissipation theorems [13]

hhGL=RðωÞhG�L=Rðω0Þi¼2πδðω−ω0ÞαGω coth

�
ℏω
2kBT

�
; ð7aÞ

hhspL=RðωÞhsp�L=Rðω0Þi¼2πδðω−ω0Þα
sp

ℏ
ðℏω−μL=RÞ

×coth

�
ℏω−μL=R
2kBT

�
; ð7bÞ

with the magnon temperature T and the left and right
magnon chemical potentials μL=R. We do not consider a
similar noise field for the phonons or temperature gradients
because we focus on genuine long-range interaction
between the two macrospin modes. This interaction is
mediated by the phonons that are driven by the magnon
distributions. In contrast, thermal phonons only add to the
damping of the two macrospin modes when there are local
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temperature gradients across the magnet–nonmagnet
interfaces.
The elastic equations of motion (5) are supplemented by

elastic continuity boundary conditions at the interfaces:

uþð0þ; tÞ ¼ uþð0−; tÞ; ð8aÞ

uþðLþ; tÞ ¼ uþðL−; tÞ: ð8bÞ

At the interfaces and boundaries, we furthermore impose
momentum conservation, yielding

μð0þÞu0þð0þ; tÞ−μð0−Þu0þð0−; tÞ−
2B⊥ffiffiffiffiffiffiffiffi
2sd

p ψLðtÞ¼ 0; ð9aÞ

μðLþÞu0þðLþ;tÞ−μðL−Þu0þðL−;tÞþ 2B⊥ffiffiffiffiffiffiffiffi
2sd

p ψRðtÞ¼0; ð9bÞ

μð−dþÞu0þð−dþ; tÞ þ
2B⊥ffiffiffiffiffiffiffiffi
2sd

p ψLðtÞ ¼ 0; ð9cÞ

−μðLþ d−Þu0þðLþ d−; tÞ − 2B⊥ffiffiffiffiffiffiffiffi
2sd

p ψRðtÞ ¼ 0; ð9dÞ

where u0þðz; tÞ ¼ ∂zuþðz; tÞ.
In a stationary state, we may write

uþðz; tÞ ¼ ð1=2πÞ R dωe−iωtuþðz;ωÞ and ψL=RðtÞ ¼
ð1=2πÞ R dωe−iωtψL=RðωÞ; then the solutions of the
coupled magnetoelastic equations of motion (5) and (6)
are given by

uþðz;ωÞ ¼

8>><
>>:

AðωÞeikðωÞðzþdÞ þ BðωÞe−ikðωÞz; −d < z < 0;

CðωÞeik̃ðωÞz þDðωÞeik̃ðωÞðL−zÞ; 0 < z < L;

EðωÞeikðωÞðz−LÞ þ FðωÞeikðωÞðLþd−zÞ; L < z < Lþ d;

ð10Þ

and

ψLðωÞ ¼ gLðωÞ
�
−hGLðωÞ − hspL ðωÞ þ

B⊥
ℏ

ffiffiffiffiffiffiffiffi
2sd

p ðeikðωÞd − 1Þ½AðωÞ − BðωÞ�
�
; ð11aÞ

ψRðωÞ ¼ gRðωÞ
�
−hGRðωÞ − hspR ðωÞ þ

B⊥
ℏ

ffiffiffiffiffiffiffiffi
2sd

p ðeikðωÞd − 1Þ½EðωÞ − FðωÞ�
�
; ð11bÞ

with the phonon wave vectors c⊥kðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ 2iηω

p
and

c̃⊥k̃ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ 2iη̃ω

p
, and the noninteracting magnon

Green’s functions

gL=RðωÞ ¼
1

ω − ωFM þ iαGωþ iαspðω − μL=R=ℏÞ
: ð12Þ

The elastic amplitudes AðωÞ;…; FðωÞ are determined by
the boundary conditions (8) and (9); as the explicit,
analytical expressions for these amplitudes are rather
involved, we omit them here.
Spin transport.—Equipped with the full, analytical sol-

ution of the coupled magnetoelastic dynamics (5) and (6),
we proceed to calculate various observables characterizing
the spin transport through the heterostructure. Throughout
the remainder of this Letter, we use parameters of YIG for
the magnets and GGG for the nonmagnet [10,12,15],
i.e., s ¼ 7.5=nm3, ρ ¼ 5170 kg=m3, c⊥ ¼ 3843 m=s,
B⊥ ¼ 6.96 × 105 J=m3, and αG ¼ 9 × 10−5, as well as
ρ̃ ¼ 7080 kg=m3, and c̃⊥ ¼ 3530 m=s. The metallic leads
are taken to be platinum, so that g↑↓ ¼ 5 nm−2 [16].
Furthermore, we assume room temperature, T ¼ 300 K,

and fix the FMR frequency to ωFM=2π ¼ 5.49 GHz. For
these parameters, the wavelengths of phonons in the
magnets and the nonmagnet are λ ¼ 2πc⊥=ωFM ¼ 700

and λ̃ ¼ 2πc̃⊥=ωFM ¼ 643 nm respectively. Lastly, the
phonon damping is taken to be η=ωFM ¼ η̃=ωFM ¼
6 × 10−5, corresponding to the damping rate measured in
Ref. [10] for a heterostructure of the same materials at room
temperature.
The spin of the left and right macrospin is given by

SR=L;zðtÞ ¼ ℏ½sV þ 1
2
− hjψR=LðtÞj2i�. To obtain the spin

current from the left to the right magnet that is detected
in the right lead, we consider the spin lost by the right
macrospin to this lead:

ð∂tSR;zÞsp ¼ 2αspRehψ�
RðtÞ½iℏ∂t − μR�ψRðtÞi ð13Þ

¼ −IR − IL→R: ð14Þ
Here, IR is a local contribution, i.e., it only depends on the
noise distribution of the right magnet itself. On the other
hand, IL→R is a genuine nonlocal spin current from the left
to the right magnet that is mediated by the phonons; it is
explicitly given by
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IL→R ¼
Z

dω
2π

T L→RðωÞ
�
fB

�
ℏω−μR
kBT

�
−fB

�
ℏω−μL
kBT

��
;

ð15Þ

with the Bose function fBðxÞ ¼ 1=ðex − 1Þ and the trans-
mission function

T L→RðωÞ¼ 2
ðαspÞ2B2⊥
ℏ3sd

ðℏω−μRÞðℏω−μLÞ

×

				gRðωÞðeikðωÞd−1Þ∂½EðωÞ−FðωÞ�
∂hspL ðωÞ

				
2

: ð16Þ

For sufficiently small biasing, μL=R ≪ ℏωFM, we may
further linearize the Bose functions. Then the spin current
(15) reduces to IL→R ¼ σðμR − μLÞ, with the nonlocal spin
conductance

σ ¼ 1

4kBT

Z
dω
2π

T L→RðωÞ
sinh2ðℏω=2kBTÞ

: ð17Þ

An intensity plot of this conductance is shown in Fig. 2 as
function of the lengths d and L of the magnetic and
nonmagnetic insulators. The conductance exhibits pro-
nounced minima for d ¼ 2n × λ=2, where n ¼ 0; 1; 2;…
The reason for this is that the macrospin exerts forces of
equal magnitude but opposite direction on the elastic field
at the interfaces, see Eq. (5). Thus the excitation of phonons
is favored when the length of the magnet is close to an odd
number of phonon half-wavelengths and suppressed when
it is close to an even number. As function of the length L of
the nonmagnetic insulator the conductance also shows a

modulation, with local maxima along the lines L=ðλ̃=2Þþ
2d=ðλ=2Þ ¼ m, where m ¼ 1; 2;… This corresponds to
standing waves for the whole heterostructure. There is a
slight deviation of the maxima from these straight lines
because the hybridization of magnon and phonon modes
leads to an anticrossing that shifts the phonon frequency
away from the FMR frequency. The decay of the conduct-
ance for increasing size d of the magnets is explained by the
decay of both the macrospin-phonon coupling [see Eq. (2)],
and the Gilbert-damping enhancement αsp ∝ 1=d that
couples the magnets to the leads, as a function of the size
of the magnets.
The behavior of the conductance for large nonmagnetic

insulators is displayed in Fig. 3, on a logarithmic scale.
Similar to magnon conductances in magnetic insulators
[1,11], the conductance exhibits a power law decay for
small L, and eventually decays exponentially for large L.
However, note that the crossover occurs at L ≈ 1000 ×
λ̃=2 ≈ 0.3 mm for our parameters, while the characteristic
decay length in the exponential regime is 0.85 mm. Both of
these length scales are almost two orders of magnitude
larger than the analogous length scales of magnon spin
currents in YIG [1,11]. Another difference to magnons is
that because of the constructive interference for standing
waves in the heterostructure (see Fig. 2), the phonon
conductance rapidly oscillates as a function of distance
in the power-law decay regime.
To further substantiate our claim of long-range phonon

spin transport, we note that away from the interfaces, the
phonon spin density (4) satisfies a continuity equation:

∂tlzðz; tÞ þ ∂zjzðz; tÞ ¼ −2ηðzÞlzðz; tÞ; ð18Þ

where

FIG. 2. Nonlocal spin conductance (17) as a function of the
lengths d and L of the magnetic and nonmagnetic insulators, for
the parameters stated in the main text. The lengths are given in
units of half wavelengths of phonons at the ferromagnetic
resonance frequency in the respective material.

FIG. 3. Decay of the spin conductance (17) as a function of the
length L of the nonmagnetic insulator in units of half-wave-
lengths, for d ¼ 2λ=7 ¼ 200 nm and the parameters stated in the
main text. Solid lines denote the envelope of the conductance
curve; in the shaded area the conductance oscillates rapidly
between the minimal and maximal values given by the envelope,
see also Fig. 2. The dashed line is an exponential fit with decay
length ≈2650 × λ̃=2 ≈ 0.85 mm.
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jzðz; tÞ ¼ −Imhu�þðz; tÞ∂z½μðzÞuþðz; tÞ�i ð19Þ

is the local phonon spin current density. Both the phonon
spin and spin current densities are shown in Fig. 4. Because
of the spin-transfer via the magnetoelastic interaction there
is a phonon spin accumulation in all three layers; see
Fig. 4(a). For the same reason the phonon spin current
shown in Fig. 4(b) is finite even in the absence of biasing,
μL ¼ 0 ¼ μR. However, this current is symmetric around
zero and consequently does not lead to a net spin transfer
between the magnets, in contrast to the biased setup with
μL − μR ≠ 0. Note also that for the parameters shown in
Fig. 4 that correspond to a standing wave, i.e., a maximum
of the conductance, the phonon spin density is of the same
order as the spin density of the macrospin magnons in the
magnets. For a minimum of the conductance or in the
exponentially decaying long-range regime on the other
hand, the phonon spin density is generally at least 2 orders
of magnitude smaller than the magnon spin.
Lastly, one can show that the total spin Jz ¼ Lz þ SL;z þ

SR;z satisfies the equation of motion

∂tJzðtÞ ¼ −2
Z

dzηðzÞlzðz; tÞ

− 2ℏ
X
X¼L;R

Imhψ�
XðtÞ½αG∂tψXðtÞ − hGXðtÞ�i

− 2ℏ
X
X¼L;R

Imhψ�
XðtÞ½αsp∂tψXðtÞ − hspX ðtÞ�i

− 2αsp
X

X¼L=R

μXhjψXðtÞj2i: ð20Þ

Therefore the total spin is conserved in the absence of
dissipation (η ¼ 0 ¼ αG=sp), and the damping and noise
terms model the loss of spin to the environment consisting
of nonuniformmagnons, electronic leads, thermal phonons,

and the rigid-body dynamics of the lattice. In consequence,
the nonlocal spin current (15) between the two magnets
must be mediated by the local phonon spin current
density (19).
Discussion and conclusions.—Utilizing the phonon

degree of freedom in (non-)magnetic insulators provides
a novel route for long-range spin transport. We have shown
that there is a finite phonon spin accumulation as well as a
finite phonon spin current in an insulating magnet–non-
magnet–magnet heterostructure driven by the magnon
distributions in the magnets. If those magnon distributions
are not in equilibrium with each other, there is a net spin
current mediated by the phonons. For realistic material
parameters, we have found that this nonlocal spin current
decays over millimeter length scales that are significantly
larger than the decay lengths of magnonic spin currents in
magnetic insulators. A direct comparison of the magnitude
of the phonon and magnon spin currents is less straightfor-
ward; however, since the magnon spin current is carried by
a continuum of thermal magnons while the phonon spin
current is driven by the single FMR mode, we expect this
phonon spin current to be small compared to the magnon
spin current at room temperature. Experimentally, the
phonon spin current is detectable electrically via the inverse
spin Hall effect in the metallic leads [1,4,11]. The predicted
phonon spin accumulation should be observable with
Brillouin light scattering [7].
Because the spin transfer from the magnons to the

phonons depends on a coherent magnon-phonon inter-
conversion process at the interfaces, the nonlocal spin
transport is particularly sensitive to the length of the
magnets, and to a lesser extent also to the length of the
nonmagnet. In particular, spin transport is almost com-
pletely prohibited when the length of the magnets
corresponds to an integer multiple of the phonon wave-
length at the ferromagnetic resonance frequency. This
makes it possible to switch between a spin-conducting
and a spin-nonconducting state by changing the ferro-
magnetic resonance frequency of the magnets, e.g., via an
external magnetic field.
While we have shown that long-range spin transport via

acoustic phonons is possible, additional research is required
to understand the effect of the phonon spin and angular
momentum conservation in spin Seebeck experiments [17],
and to understand the relaxation of the phonon spin beyond
phenomenological models.

We acknowledge useful discussions with Simon Streib
and Gerrit E. W. Bauer. This work is supported by the
European Research Council via Consolidator Grant
No. 725509 SPINBEYOND. R. D. is a member of the
D-ITP consortium, a program of the Netherlands
Organisation for Scientific Research (NWO) that is funded
by the Dutch Ministry of Education, Culture and Science
(OCW). This research was supported in part by the National
Science Foundation under Grant No. NSF PHY-1748958.

(a) (b)

FIG. 4. (a) Phonon spin and (b) phonon spin current densities for
μL ¼ 0 ¼ μR (solid lines), and μL ¼ 0.01 × ℏωFM and μR ¼ 0
(dashed lines) for the parameters stated in themain text.The system
size is set to d ¼ 2λ=7 ¼ 200 and L ¼ 3λ̃=7 ¼ 275.6 nm. The
shaded region denotes the magnets. The small jumps in lz at the
interfaces are due to the differentmass densities of themagnets and
the nonmagnet. On the other hand, the jumps in jz are not only
caused by the change of shear modulus but also by the magne-
toelastic coupling, see Eq. (9) For comparison, the macrospin
magnon spin densities in both magnets are ≈ − 600 × 2ℏ=λ.

PHYSICAL REVIEW LETTERS 124, 117201 (2020)

117201-5



[1] L. J. Cornelissen, J. Liu, R. A. Duine, J. B. Youssef, and
B. J. van Wees, Long-distance transport of magnon spin
information in a magnetic insulator at room temperature,
Nat. Phys. 11, 1022 (2015).

[2] R. Lebrun, A. Ross, S. A. Bender, A. Qaiumzadeh, L.
Baldrati, J. Cramer, A. Brataas, R. A. Duine, and M. Kläui,
Tunable long-distance spin transport in a crystalline anti-
ferromagnetic iron oxide, Nature (London) 561, 222 (2018).

[3] S. Streib, H. Keshtgar, and G. E. W. Bauer, Damping of
Magnetization Dynamics by Phonon Pumping, Phys. Rev.
Lett. 121, 027202 (2018).

[4] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I.
Halperin, Nonlocal magnetization dynamics in ferromag-
netic heterostructures, Rev. Mod. Phys. 77, 1375 (2005).

[5] A. T. Levine, A note concerning the spin of the phonon,
Nuovo Cimento 26, 190 (1962).

[6] D. A. Garanin and E. M. Chudnovsky, Angular momentum
in spin-phonon processes, Phys. Rev. B 92, 024421 (2015).

[7] J. Holanda, D. S. Maior, A. Azevodo, and S. M. Rezende,
Detecting the phonon spin in magnonphonon conversion
experiments, Nat. Phys. 14, 500 (2018).

[8] J. J. Nakane and H. Kohno, Angular momentum of phonons
and its application to single-spin relaxation, Phys. Rev. B
97, 174403 (2018).

[9] V. L. Korenev, M. Salewski, I. A. Akimov, V. F. Sapega, L.
Langer, I. V. Kalitukha, J. Debus, R. I. Dzhioev, D. R.
Yakovlev, D. Mller, C. Schröder, H. Hövel, G. Karczewski,
M. Wiater, T. Wojtowicz, Yu. G. Kusrayev, and M. Bayer,
Long-range p-d exchange interaction in a ferromagnet-
semiconductor hybrid structure, Nat. Phys. 12, 85 (2016).

[10] K. An, A. N. Litvinenko, A. A. Fuad, V. V. Naletov, L. Vila,
U. Ebels, G. de Loubens, H. Hurdequint, N. Beaulieu, J.
Ben Youssef, N. Vukadinovic, G. E. W. Bauer, A. N. Slavin,
V. S. Tiberkevich, and O. Klein, Long range coupling of
magnetic bi-layers by coherent phonons, arXiv:1905.12523
[Phys. Rev Lett. (to be published)].

[11] L. J. Cornelissen, K. J. H. Peters, G. E. W. Bauer, R. A.
Duine, and B. J. van Wees, Magnon spin transport driven
by the magnon chemical potential in a magnetic insulator,
Phys. Rev. B 94, 014412 (2016).

[12] A. G. Gurevich and G. A. Melkov, Magnetization Oscilla-
tions and Waves (CRC Press, Boca Raton, 1996).

[13] J. Zheng, S. Bender, J. Armaitis, R. E. Troncoso, and R. A.
Duine, Green’s function formalism for spin transport in
metal-insulator-metal heterostructures, Phys. Rev. B 96,
174422 (2017).

[14] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Enhanced
Gilbert Damping in Thin Ferromagnetic Films, Phys. Rev.
Lett. 88, 117601 (2002).

[15] V. Cherepanov, I. Kolokolov, and V. Lvov, The saga of YIG:
Spectra, thermodynamics, interaction and relaxation of
magnons in a complex magnet, Phys. Rep. 229, 81
(1993).

[16] X. Jia, K. Liu, K. Xia, and G. E.W. Bauer, Spin transfer
torque on magnetic insulators, Europhys. Lett. 96, 17005
(2011).

[17] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda,
T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W.
Bauer, S. Maekawa, and E. Saitoh, Spin Seebeck insulator,
Nat. Mater. 9, 894 (2010).

PHYSICAL REVIEW LETTERS 124, 117201 (2020)

117201-6

https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/s41586-018-0490-7
https://doi.org/10.1103/PhysRevLett.121.027202
https://doi.org/10.1103/PhysRevLett.121.027202
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1007/BF02754355
https://doi.org/10.1103/PhysRevB.92.024421
https://doi.org/10.1038/s41567-018-0079-y
https://doi.org/10.1103/PhysRevB.97.174403
https://doi.org/10.1103/PhysRevB.97.174403
https://doi.org/10.1038/nphys3497
https://arXiv.org/abs/1905.12523
https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1103/PhysRevB.96.174422
https://doi.org/10.1103/PhysRevB.96.174422
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1016/0370-1573(93)90107-O
https://doi.org/10.1016/0370-1573(93)90107-O
https://doi.org/10.1209/0295-5075/96/17005
https://doi.org/10.1209/0295-5075/96/17005
https://doi.org/10.1038/nmat2856

