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Momentum transport is anomalous in chiral pþ ip superfluids and superconductors in the presence of
textures and superflow. Using the gradient expansion of the semiclassical approximation, we show how
gauge and Galilean symmetries induce an emergent curved spacetime with torsion and curvature for the
quasirelativistic low-energy Majorana-Weyl quasiparticles. We explicitly show the emergence of the spin
connection and curvature, in addition to torsion, using the superfluid hydrodynamics. The background
constitutes an emergent quasirelativistic Riemann-Cartan spacetime for the Weyl quasiparticles which
satisfy the conservation laws associated with local Lorentz symmetry restricted to the plane of uniaxial
anisotropy of the superfluid (or superconductor). Moreover, we show that the anomalous Galilean
momentum conservation is a consequence of the gravitational Nieh-Yan (NY) chiral anomaly the Weyl
fermions experience on the background geometry. Notably, the NY anomaly coefficient features a
nonuniversal ultraviolet cutoff scale Λ, with canonical dimensions of momentum. Comparison of the
anomaly equation and the hydrodynamic equations suggests that the value of the cutoff parameter Λ is
determined by the normal state Fermi liquid and nonrelativistic uniaxial symmetry of the p-wave superfluid
or superconductor.
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Introduction.—Topological phases can be classified in
terms of quantum anomalies that are robust to interactions
and other perturbations [1–3]. Protected emergent quasir-
elativistic Fermi excitations coupled to gauge fields and
geometry arise as dictated by topology and anomaly inflow
[4–6]. In particular, gapless fermions with Weyl spectrum
and chiral anomalies are a recent prominent example
[7–17]. On the other hand, topological phases and their
coupling to geometry (and gravity) is currently a rapidly
advancing subject. The well-established results concern the
Hall viscosity [18] and chiral central charge [19–21] related
to gravitational anomalies [22–24] and thermal transport in
quantum Hall systems, topological superfluids (SFs) and
superconductors (SCs), as well as semimetals [25–55], the
case of SFs and SCs being especially important due to the
lack of conserved charge. Any purported topological
response of geometrical origin is necessarily more subtle
than that based on gauge fields with conserved charges due
to the inherent dichotomy between topology and geometry.
Topologically protected Weyl quasiparticles also arise in

three-dimensional chiral p-wave SFs and SCs from the gap
nodes [5,56] and lead to nonzero normal density close to
the Fermi surface zeros, even at zero temperature [57,58].
As any chiral fermion in three dimensions, they suffer from
the chiral anomaly in the presence of nontrivial background
fields, now as an anomaly where momentum is transferred
from the order parameter fluctuations to the quasiparticles
[56–62],

∂tPvac þ∇ ·Πvac ¼ −∂tPqp −∇ ·Πqp ≠ 0; ð1Þ

where Pvac;qp and Πvac;qp refer, respectively, to the momen-
tum and stress-tensor of the order parameter vacuum and
quasiparticles (qps). Because of textures and superflow, the
quasiparticles and -holes flow through the gap nodes
transferring net momentum. The total momentum is con-
served. The chiral anomaly (1) on vortices [63] has been
measured in the early landmark experiment in 3He-A [64].
See the Supplemental Material (SM) [65] for a detailed
review of Eq. (1) in terms of SF hydrodynamics.
The anomaly (1) relates to the famous angular momen-

tum “paradox” of the chiral superfluid or superconductor
[57,59–61,66,67]: even though each Cooper pair carries net
angular momentum ℏ, the pairs overlap substantially. In a
fixed volume, the overlap is of the order ∼a2=ξ2 with mean
pair separation a and coherence length ξ. This makes the
local angular momentum contribution very small, of the
order ∼ðΔ0=EFÞ2, instead of (half) the total fermion
density, where Δ0 is the gap and EF the Fermi energy.
At equilibrium, the local variation of angular momentum is
still well defined. Similarly, the total linear momentum
density is well defined, but it is no longer conserved
separately between the condensate and normal component,
producing the anomaly [57,58]. This is in contrast to a
system of nonoverlapping Bose Cooper pair “molecules”
where the anomaly due to Weyl nodes also naturally
vanishes [56,57].
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Here, we show that the momentum anomaly (1) is a
manifestation of the so-called chiral gravitational Nieh-Yan
(NY) anomaly [68–74] on emergent spacetime with torsion
(and curvature) coupling to the low-energy Weyl fermions.
The subtle role of this gravitational (geometric) anomaly
term due to torsion has been debated in the literature since
its discovery [75]. We show how it arises through the
Galilean symmetries and hydrodynamics of the nonrela-
tivistic system with an explicit ultraviolet completion.
Therefore, taken at face value, the NY anomaly has been
experimentally verified in the late 90’s, albeit in the context
of emergent condensed matter fermions and spacetime
induced by the SF order parameter. Emergent spacetime in
two-dimensional topological SCs was recently carefully
discussed in Ref. [53]. Related recent work discusses
emergent tetrads, gauge fields, and anomaly terms in
Weyl SFs [67,76] and semimetals [54,77–81], without
the framework of emergent conservation laws and
geometry.
Model.—We consider an equal spin pairing p-wave SF at

zero temperature on flat Euclidean space in the mean-field
(MF) approximation [5,82] (see the SM [65] for more
details). We comment below how to extend our results
to SCs. The action for the spinless Grassmann fermion
fΨðxÞ;Ψ†ðx0Þg ¼ 0 is (ℏ ¼ 1, summation over repeated
indices)

S½Ψ;Ψ†;Δ;Δ†� ¼
Z

d4xΨ†i∂tΨ −HMF;

HMF ¼ ϵðΨ; ∂iΨÞ þ
1

2i
ðΔiΨ†∂iΨ† þ Δ�iΨ∂iΨÞ: ð2Þ

The normal state energy is ϵðΨ; ∂iΨÞ ¼ ð∂iΨ†∂iΨ=2mÞ−
μFΨ†Ψ, where m is the constituent mass, μF ¼ p2

F=2m is
the normal state Fermi level. The spinless MF gap ampli-
tude ΔiðxÞ ∝ ð1=2iÞhΨ∂iΨi is Δi ¼ ðΔ0=pFÞðm̂ − in̂Þi≡
c⊥ðê1 − iê2Þi, the unit vector ê3 ¼ m̂ × n̂ ¼ l̂ being the
axis of orbital angular momentum of the Cooper pairs. The
dynamics of the SF free energy is ignored, and ΔðxÞ;Δ†ðxÞ
represent given background fields. We ignore Fermi liquid
corrections [82] for simplicity as we expect that these will
not affect the arguments which are based on the sym-
metries, hydrodynamics, and anomalies of the system. For
SCs, we perform minimal substitution in ϵðΨ; ∂iΨÞ.
Symmetries and Galilean transformations.—The unbro-

ken continuous symmetries of the normal Fermi liquid state
are Uð1ÞN × R3 × SOð3ÞL, where the translations and
rotations R3 × SOð3ÞL form a subgroup of the Galilean
group. The gauge and rotational symmetries are broken to
the combined gauge symmetry Uð1ÞN=2þL3

[83]. In addi-
tion, time-reversal symmetry is broken allowing for the
emergence of Weyl quasiparticles.
In the SF, the global Uð1ÞN gauge symmetry leads to the

conservation law ∂μJμ ¼ −ΔiΨ†∂iΨ† þ Δ�iΨ∂iΨ, where
Jμ ¼ ðρ; JiÞ is the normal state fermion current. A Galilean

transformation from the SF comoving frame (cmf) is given
as x0 ¼ xþ vst and t0 ¼ t. In terms of SF velocity vs and
chemical potential μm, we transform [82,84]

ΨðxÞ → Ψ0ðx0Þ ¼ e−i½mvs·xþ1
2
ðmv2s−2μmÞt�Ψðxþ vst; tÞ;

ΔðxÞ → e−i½2mvs·xþðmv2s−2μmÞt�Δðxþ vst; tÞ: ð3Þ

The gauge and Galilean transformations are not
independent for coordinate dependent transformation
parameters. For infinitesimal constant velocity, the action
changes in the cmf with Ψ0ðx0Þ as δScmf ½vs; μm� ¼R
d4xmvs · Ji − μmρþOðv2sÞ. Equivalently, ∂μΨ → ð∂μ−

imvμÞΨ, where vμ ¼ ð−μm=m; vsÞ. Rotations along ê3 act
as Δi → eiφΔi and lead to the combined gauge symmetry
[83]. The SF velocity is determined as

2mvis ¼ −ê1 · ∂iê2 ¼ ∂iφ; 2μm ¼ ê1 · ∂tê2 ¼ −∂tφ; ð4Þ

where −φ is the rotation angle. In addition, the SF velocity
satisfies the Mermin-Ho relations [56,85]

∇ × vs ¼ −
κ

4π
ϵijkl̂i∇l̂j ×∇l̂k;

∂tvs þ∇μm ¼ −
κ

2π
ϵijkl̂i∂t l̂j∇l̂k: ð5Þ

where κ ¼ h=2m is the circulation quantum. The trans-
lation symmetry corresponds to the energy-momentum
tensor conservation law, S ¼ R

d4xL,

∂μΠ
μ
ν ¼ ∂νLjexplicit; ð6Þ

where Πμ
ν ¼ −ð∂L=∂ð∂μΨÞÞ∂νΨþ H:c:þ Lδμν . In particu-

lar, this conservation law is broken by the anomaly (1) for
ν ¼ i along l̂. Moreover, Πi

j is not symmetric in the plane
determined by Δi, as is well known in 3He-A [53,56,82].
See the SM [65] for more details on the symmetries of
the model.
Linearized comoving quasiparticle action.—We define

the Bogoliubov transformation ΨðxÞ ¼ P
s usðxÞasþ

v�sðxÞa†s , where s is a generalized index in quasi-
particle (particle-hole) space with fa†s ; a0sg ¼ δss0 . The
Bogoliubov-de Gennes (BDG) quasiparticles form a spin-
less two-component Grassman Nambu spinor ΦðxÞ∼P

s ð usðxÞvsðxÞ ÞTas, with the Lagrangian

LBDG ¼ Φ†ðxÞ
�
i∂t − ϵð−i∂iÞ 1

2
fΔi; i∂ig

1
2
fΔ�i; i∂ig i∂t þ ϵði∂iÞ

�
ΦðxÞ: ð7Þ

If ðusvsÞ is a solution to the equation of motion with energy
εs, ðv�−su�−sÞ satisfies the particle-hole conjugate solution
ε−s ¼ −εs. This implies the Majorana relation τ1Φ† ∼Φ.
For a homogenous state, the dispersion vanishes on the
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Fermi surface at k ¼ �pF l̂. The same BDG action applies
for SCs with the replacements ∂t → ∂t − iA0τ

3,
τ3ϵð∓ i∂iÞ → τ3ϵ½∓ ði∂i þ AiÞ�, where the signs are
according to eigenstates of τ3 and vμ → vμ − Aμ, where
Aμ is the electromagnetic gauge potential.
Now, we consider the low-energy fermions in the

presence of slowly varying order parameter texture and
Galilean transformation parameters vsðxÞ; μmðxÞ in the
semiclassical approximation, see, e.g., [86]. We assume
that the BDG fermions with gap ≳mc2⊥ have been
integrated out and restrict ourselves to the linear expansion
close to the Weyl nodes �pF l̂. The dispersion is

Φ†ðxÞϵð−i∂ÞΦðxÞ≈
X
�
χ̃†�ðxÞ

�
vF
2
l̂iðxÞ;−i∂i

�
χ̃�ðxÞ; ð8Þ

and we neglect terms of order Oð∂2χ̃Þ, where ΦðxÞ ¼P
� e�ipF

R
x l̂ðx0Þ·dx0 χ̃�ðxÞ and χ̃�ðxÞ is slowly varying

compared to pF. The order parameter vectors form the
spatial part of an inverse tetrad e i

a ¼ fðc⊥=ckÞm̂;

ðc⊥=ckÞn̂; l̂g with uniaxial symmetry. Note that, after
linearization of ϵð−i∂Þ, we perform in (8) the transforma-
tion Φ → χ̃, i.e., fei3; ð−i∂i − e3pFÞig → fei3; ∂ig corre-
sponding to a chiral rotation in momentum space due to the
node. This is precisely the anomalous chiral symmetry in
the system and produces the quasirelativistic anomaly (18)
below, proportional to Λ ∝ pF in the path-integral repre-
sentation [72,73,87].
Further, in the presence of SF velocity vμ ¼ ∂μφ ¼

2mðμm=m;−vsÞ, the fermions transform in the comoving
frame as χ̃ → e−iφτ

3=2χ̃, ei1 − iei2 → e−iφðe1 − ie2Þi where
φðxÞ is slowly varying compared to pF. The derivative
operator transforms to τaieμa∂μ → τaieμað∂μ − i

2
∂μφτ

3Þ.
These coincide with local spin-1=2 Lorentz transformations
in the 12 plane, and we can attempt to associate the
linearized action to a nontrivial spacetime. Denoting the
Pauli matrices τa; τ̄a ¼ ð1;�τiÞ in Nambu space, velocities
ck ¼ vF ¼ pF=m and c⊥ ¼ ðΔ0=pFÞ, and ∂μ ¼ ð∂t; ck∂iÞ,
the linearized action close to the node þpF l̂, written in
explicitly Hermitian form, becomes

S½χ̃†; χ̃;Δ;μm;vs� ¼
Z

d4x
1

2
ðχ̃†i∂tχ̃ − i∂tχ̃

†χ̃Þþ ðμF −μmÞχ̃†τ3χ̃ −
pF l̂

i

2
χ̃†vF l̂

iτ3χ̃

þvF l̂
i

2
ðχ̃†τ3i∂iχ̃ − i∂iχ̃

†τ3χ̃Þ− 1

2
½χ̃†ðei1τ1i∂iþ ei2τ

2i∂iÞχ̃þH:c:� þpF l̂ · vsχ̃†χ̃ −
vis
2
ðχ̃†i∂iχ̃ − i∂iχ̃

†χ̃Þ: ð9Þ

Emergent Riemann-Cartan spacetime.—The action (9)
is (after a rotation of τa in the 12 plane) equivalent to a
relativistic chiral (right-handed) Majorana-Weyl fermion on
Riemann-Cartan spacetime [69,88,89], see the SM [65] for
a review of Rieman-Cartan spacetimes and our conventions
on relativistic fermions,

SWeyl½χ; χ†; e;ω� ¼
1

2

Z
ed4xχ†τaeμaiD⃗μχ þ H:c:; ð10Þ

with the identifications χ ¼ e−1=2χ̃, e ¼ det eaμ ¼ ðc2k=c2⊥Þ,

eμ0 ¼ ð1;−vsÞ; eμ1 ¼
c⊥
ck

ð0; m̂Þ;

eμ2 ¼
c⊥
ck

ð0; n̂Þ; eμ3 ¼ ð0; l̂Þ; ð11Þ

andω12
μ ¼ 2mvsμ ¼ 2mð−μm=m; visÞ ¼ ∂μφ. The covariant

derivate is D⃗μ ¼ ∂μ − ði=4Þωab
μ σab, σab ¼ ði=2Þ½τ̄a; τb�.

Note that the Galilean invariance leads to both the shift
ei0 ¼ −vis, although it is Oð∂2Þ in the action, and the spin
connection term ei3ω

12
i χ̃†χ̃ ∝ pF l̂ · vs in Eq. (9). We also

emphasize that we explicitly retained the momentum

density p2
F l̂

2=2mχ̃τ3χ̃ in the action, which cancels with
the Fermi level μFχ̃τ3χ̃, since this term represents nonzero
physical Galilean momentum present at the Weyl node, see
Eq. (16) below.
Equations (10), (11), and the spin-connection ω12

μ define
a Weyl fermion on an emergent Riemann-Cartan spacetime
[69,88], with the uniaxial metric gμν ¼ eμaeνbη

ab, eaμeνa ¼ δμν ,
and ∇μeaν ≡ ∂μeaμ þ ωa

μbe
a
ν − Γλ

μνeaλ ¼ 0. The nonzero tor-
sion and curvature tensors are given by Ta

μν ¼ ∂μeaν−
∂νeaμ þ ωa

μbe
b
ν − ωa

νbe
b
μ and R12

μν ¼ ∂μω
12
ν − ∂νω

12
μ ¼

2mð∂μvsν − ∂νvsμÞ. Although seemingly pure gauge, the
latter is, in general, nonzero by the Mermin-Ho relations
Eq. (5). This correspondence is the first major result of the
Letter. See the SM [65] for a glossary of Riemann-Cartan
spacetimes [88,89].
Conservation laws on curved spacetime.—Now, we

formulate the SF conservation laws in terms of the Weyl
fermions coupled to emergent spacetime [38,53,69]. The
current ðρ; JiÞ in terms of the Weyl quasiparticles is
ðχ̃†τ3χ̃; pF l̂

iχ̃†χ̃ − 1
2
½χ̃†i∂iχ̃ − i∂iχ̃

†χ̃�Þ. To first order in
gradients, ∂μJμ is equal to 1

2
ðχ̃†½ei1τ1i∂i þ ei2τ

2i∂i�χ̃þ
H:c:Þ. On the other hand, this becomes (assuming only
ω12
μ ≠ 0 and e ¼ const)
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e∂μS
μ
12 ¼ −eT12 þ eT21; ð12Þ

in terms of the Weyl fermions [53]. Here, the currents

Ta
μ ¼

1

e
δSW
δeμa

¼ 1

2
χ†τaiD⃗μχ −

1

2
iχ†D⃖μτ̄

aχ

¼ 1

2
ðχ†τai∂μχ − i∂μχ

†τaχÞ þ 1

8
ωbc
μ χ†fτa; σbcgχ; ð13Þ

Sμab ¼ 2
1

e
δSW
δωab

μ
¼ 1

4
eμcχ†fτc; σabgχ; ð14Þ

are derived from the relativistic Weyl action Eq. (10). In
particular Sμ12 ¼ 1

4
χ†eμafτa; τ3gχ and Ta

b ¼ eμbT
a
μ. The rela-

tivistic conservation law Eq. (12) follows from the local
Lorentz symmetries

δχ ¼ −
i
4
Λabσ

abχ; δeaμ ¼ Λa
be

b
μ;

δωab
μ ¼ Λa

cω
cb
μ þ ωac

μ Λb
c − ∂μΛab; ð15Þ

which, when restricted to the 12 plane, coincide with the
Galilean transformations. Indeed, the energy momentum
tensor Πμ

ν was not symmetric either in this plane, the
linearization of which is equal to, see the SM [65],

Πν
μ ¼ ðΠð1Þ þ Πð2ÞÞνμ ¼ pF l̂

iejνδiμ − eeνaTa
μ þ eω12

μ Sν12:

ð16Þ

The Galilean term Πð1Þ proportional to ejν ¼ χ̃†eνaτaχ̃
arises due to the finite momentum density þpF l̂ at the
node and, therefore, contributes to energy momentum. The
corresponding relativistic conservation law related to Πμ

ν of
the linearized Weyl action follows from spacetime diffeo-
morphisms and leads to

∂μ

�
−eμaTa

ν þ
1

2
ωab
ν Sμab

�
¼ ∂νe

μ
aTa

μ þ
1

2
∂νω

ab
μ Sμab; ð17Þ

i.e., ∂μΠ
ð2Þμ
ν ¼ ∂νL. The field theory conservation equation

for the energy-momentum Eq. (6) is, then, equivalent to
Eq. (17) and the conservation of the quasiparticle current
density ejμ ¼ ðχ̃†χ̃; χ̃†½−vis þ vF l̂

iτ3�χ̃Þ at the node [up to
subleading terms Oð∂=pFÞ, see, e.g., [58,60] ]. Although
the Weyl action (10) implies the classical conservation law
∂μjμ ¼ 0, this suffers from the chiral anomaly at the
quantum level due to the emergent spacetime (11).
Nieh-Yan anomaly.—Adding both chiralities �pF l̂, the

conservation law for momentum is broken since, in spite of
Eq. (17), ∂μj

μ
5 ¼ ∂μðjμþ − jμ−Þ ≠ 0 at the quantum level, i.e.,

the conservation law suffers from the axial anomaly
(however, the Weyl qp number is conserved
∂μ

P
� jμ� ¼ 0) and leads to the observed momentum

nonconservation Eq. (1) in the system. The gravitational
NY anomaly is [34,68,70,72], for a chiral pair of Weyl
fermions, with ea ¼ eaμdxμ,

∂μðejμ5d4xÞ ¼
Λ2

4π2
ðTa ∧ Ta − ea ∧ eb ∧ RabÞ; ð18Þ

where the higher order term OðR2Þ is neglected. For the
pþ ip SF, the anomalous chiral Weyl action is (10) with
spacetime defined by Eq. (11). Note that, although the
quasiparticles χ̃ are Majorana-Weyl contributing one-half
of Eq. (18) per node, a factor of 2 comes from accounting
for spin degeneracy. The temporal torsion T0 ¼ 0, and we
compute the spatial contribution,

T1 ∧ T1 þ T2 ∧ T2

¼ 2

�
ck
c⊥

�
2

ϵ0ijk½ðl̂ · vsÞ∂il̂a − ∂ivsa�l̂j∂kl̂ad4x

¼ 2

�
ck
c⊥

�
2

ϵ0ijkl̂i∂jvs · ∂kl̂d4x ≈ 0þOð∂3Þ;

where ϵ0xyz ¼ −1 and

T3 ∧ T3 ¼ f2ϵ0ijk½∂tl̂i − ∂iðvs · l̂Þ�∂j l̂kgd4x
¼ 2ϵ0ijkf½∂tl̂i − ðvs · ∇Þl̂i�∂jl̂k − l̂a∂ivsa∂j l̂kgd4x
≈ 2ϵ0ijkf½∂t l̂i − ðvs ·∇Þl̂i�∂j l̂kgd4xþOð∂3Þ:ð19Þ

The curvature term −ea ∧ eb ∧ Rab is

−
4π

κ

�
ck
c⊥

�
2

ϵ0ijkfm̂in̂jð∂0vsk − ∂kvs0Þ

þ ½ðm̂ · vsÞn̂i − ðn̂ · vsÞm̂i�ð∂jvskÞgd4x

¼
�
ck
c⊥

�
2

ϵ0ijk½2m̂in̂jðl̂ · ∂t l̂ × ∂kl̂Þ

þ ðl̂ × vsÞiðl̂ · ∂j l̂ × ∂kl̂Þ�d4x: ð20Þ

To lowest order in gradients, we arrive to

e∂μj
μ
5 ¼

Λ2

2π2
e

�
1 −

c2⊥
c2k

�
ϵ0ijk½∂tl̂i − ðvs ·∇Þl̂i�∂j l̂k; ð21Þ

where e ¼ ðck=c⊥Þ2. Matching the expression with the
hydrodynamic anomaly [56,57,62] in the SM [65], the
anisotropic cutoff is Λ ¼ ðc⊥=ckÞpF and applies in a Weyl

SF with the nodes at �pF l̂, such as 3He-A, or in a Weyl SC
after minimal substitution [53,62]. The expression is a
Galilean invariant and the coefficient is proportional to the
weak-coupling normal state density [without the logarithm
lnðEF=Δ0Þ due to the neglected gapped fermions [57] ].
This the central result of the Letter. The NY anomaly
equation can also be derived with simple arguments using
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Landau levels and spectral flow in the case of a torsional
magnetic field T3

μν [9,11,34,58]. In general, the dimensional
coefficient Λ is seen simply to follow from the fact that
torsion couples to momentum and that the density of states
of the anomalous chiral lowest Landau level branches is
momentum dependent. Lorentz invariance would require
that the Weyl nodes are symmetrically at pμ ¼ 0 which
leads to Λ ¼ 0 at the node. For chiral Weyl nodes with a
nonzero separation 2pμ in momentum space, the coefficient
of the torsion anomaly is Λ ∝ jpj according to the spectral
flow calculation.
In condensed matter systems, however, theWeyl descrip-

tion of the quasiparticles and the chiral anomaly breaks
down at some cutoff scale. This is in contrast to funda-
mental Weyl fermions, where the conventional chiral
anomalies satisfy IR-UV independence: the anomaly is
the same at each energy scale since it can be computed by
comparing to a theory with no anomaly simply by adding a
high-energy chiral fermion that cancels the anomaly of the
original theory [23]. On the other hand, for 3He-A the UV
completion is fully known in terms of the Fermi-liquid
theory and the anomalous SF hydrodynamics of 3He-A [5].
In the idealized p-wave BCS pairing model (2), the cutoff
energy scale EIR ¼ Δ for the SF is determined from the MF
gap equation c⊥ ∼ ðEUV=pFÞe−m3n=g ∼ ðΔ=pFÞ, where g is
the δ-function interaction coupling constant and EUV ∼
vFpF ¼ ckpF the normal state Fermi energy. The linear
quasirelativistic Weyl regime emerges when E ≪ EW ¼
mc2⊥ ¼ ðc⊥=ckÞΔ. Therefore, the uniaxial anisotropy is
simply the relative scale ðc⊥=ckÞ ¼ ðEIR=EUVÞ, while the
linear Weyl regime is suppressed by an additional factor of
c⊥=ck compared to EIR leading to the value of
Λ ¼ ðc⊥=ckÞpF. In 3He-A, c⊥=ck is of the order 10−3

[82]. Remarkably, the hydrodynamic anomaly (1) is the
same as in Eq. (18) when all states beyond the linear
quasirelativistic Weyl approximation are taken into
account.
Outlook.—We have revisited the anomalous momentum

transport in chiral p-wave SFs and SCs in terms of a
consistent hydrodynamic and low-energy effective theory
description. Using the gauge and Galilean symmetries of
the system, we have shown how the quasirelativistic Weyl
approximation, emergent spacetime, and symmetries
appear in the semiclassical derivative expansion. The
anomalous transport is a consequence of the axial gravi-
tational NYanomaly due to the chiral Weyl fermions on an
emergent Riemann-Cartan spacetime with torsion.
Here, we have shown that the emergent spacetime

formulation satisfies all the symmetries and conservation
laws of the effective field theory required for the gravita-
tional NYanomaly and saturates the nonzero value from SF
hydrodynamics [64]. The early papers [9–12] treat the
anomaly in terms of a momentum space axial gauge field;
this follows from our formalism via the substitution of the

tetrad ei3 ¼ ẑþ δei3, formally equivalent to gauge field
∼pFδl̂μ in the Hamiltonian [34,54,90]. In contrast,
Refs. [67,76] inconsistently consider both contributions
independently. Moreover, the emergent gauge field does
not correspond to physical symmetry in the system and pF
is an explicit UV scale. This is distinct from the emergent
spacetime (11), which, in addition, is valid for arbitrary
(semiclassical) textures and superflow, or considerations of
other Weyl systems, where the emergent tetrads or gauge
fields (e.g., elastic deformations, Fermi velocities, node
separation) are independent [54,77,78]. On the other hand,
Ref. [54] sets the NY cutoff to the lattice scale and neglects
the breakdown of the linear Weyl spectrum.
Interestingly, for the emergent spacetime in Eq. (11), the

anomaly coefficient seems to vanish in the relativistic case
c⊥ ¼ ck, but this is probably an artefact of the breakdown
of the (weak-coupling) BCS model. Our findings corrobo-
rate the subtle interplay of broken Lorentz invariance,
anisotropic dispersion, renormalization, and the NY-
anomaly coefficient Λ and should be verified by detailed
field theory computations [34,53,55,72,91,92]. Similarly,
the relation of the emergent quasirelativistic (or uniaxial)
spacetime to Newton-Cartan geometries should be clarified
[84,93–96]. We did not consider the dynamics of the SF
order parameter or Goldstone modes, orbital nonanalycity
[5,56,97], nor derive the Wess-Zumino consistency equa-
tion and action for the chiral NY anomaly. This will be a
gravitational Chern-Simons term for the tetrad and spin
connection [16,98–100]. Likewise, we did not consider
singular vortices, which will lead to additional curvature
and zero modes, as well as the Iordanskii force and
gravitational Aharonov-Bohm phase [5] for the quasipar-
ticles. The connection of emergent spacetime and thermal
transport should be explored [40,76]. In particular, it is
possible that the UV scale Λ is supplemented by the IR
temperature scale in the anomaly, which can be universal
[101]. These, and other considerations extending previous
results in the literature, will be left for the future.
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