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We study the competition between local (bridging) and global condensation of fluid in a chemically
heterogeneous capillary slit made from two parallel adjacent walls each patterned with a single stripe.
Using a mesoscopic modified Kelvin equation, which determines the shape of the menisci pinned at the
stripe edges in the bridge phase, we determine the conditions under which the local bridging transition
precedes capillary condensation as the pressure (or chemical potential) is increased. Provided the contact
angle of the stripe is less than that of the outer wall we show that triple points, where evaporated, locally
condensed, and globally condensed states all coexist are possible depending on the value of the aspect ratio
a ¼ L=H, where H is the stripe width and L the wall separation. In particular, for a capillary made from
completely dry walls patterned with completely wet stripes the condition for the triple point occurs when
the aspect ratio takes its maximum possible value 8=π. These predictions are tested using a fully
microscopic classical density functional theory and shown to be remarkably accurate even for molecularly
narrow slits. The qualitative differences with local and global condensation in heterogeneous cylindrical
pores are also highlighted.
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Confined fluids can exhibit dramatically different phase
behavior and associated phase transitions to that occurring in
the bulk [1–3]. Even for a singlewall (substrate), the presence
of the wall-fluid interaction induces rich new surface phase
phenomena: wetting transitions are a very well-known
example of this [4–7]. The complexity of the fluid phase
behavior is further enriched if the wall is geometrically or
chemically heterogeneous [8]. Wedge filling [9–12], step
wetting [13], bridging [14–16], and the change fromCassie’s
[17] to Wenzel’s [18] state are but a few examples of phase
transitions directly induced by the substrate geometry.
Another related phenomenon is capillary condensation
referring to the shift of the bulk liquid-gas phase boundary,
when a fluid is confined between two parallel walls separated
by a distance L. Macroscopically, the shift in the chemical
potential, relative to saturation, at which capillary conden-
sation (CC) occurs is given by Kelvin’s equation

δμCC ≡ μsat − μCC ¼ 2γ cos θ
LΔρ

; ð1Þ

where γ is the liquid-gas surface tension, θ is Young’s contact
angle, andΔρ is the difference between the number densities

of coexisting liquid and gas. Here, the Laplace pressure δp
due the curved interface separating liquid and gas phases has
been approximated by δp ≈ δμCCΔρ valid for small under-
saturation [19]. Studies based on microscopic density func-
tional theory (DFT) models [5,20] have shown that the
Kelvin equation is remarkably robust. This is particularly
true for partialwetting (θ > 0),where thickwetting layers are
absent at each wall.
There have also been a number of studies of fluid

confinement between walls that are themselves geometri-
cally sculpted or patterned, that is when translational
invariance is broken both across and along the slit [21–
29]. In particular, numerical DFT studies have established
that capillary condensation, which must still be present,
competes with other types of phase transition induced by
the patterning or equivalently that the condensation occurs
in two steps. In this Letter, we show that this problem can
be studied analytically and derive results characterizing the
two step condensation which apply to capillaries of all
scales from the macroscopic down to the molecular. To do
this we consider the case in which each wall is chemically
heterogeneous and has a macroscopically long stripe or
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patch of width H for which the local contact angle is θp.
Outside of this region the wall is made from a different
material where the contact angle is θ. The stripes are
adjacent and parallel (see Fig. 1). Since the outer wall area
is macroscopically large the location of the global capillary
condensation from a gaslike to a liquidlike phase as the
chemical potential is increased is unaffected by the pres-
ence of the stripes. However, if θp < π=2 (so there is
greater affinity to liquid than to gas) and θp < θ, so that it
preferentially adsorbs the liquid relative to the outer wall, it
is also possible that the fluid locally condenses forming a
liquid bridge between the patches. This is a third possible
phase for the confined fluid which competes with the
evaporated (gaslike) and globally condensed (liquidlike)
fluid states (see Fig. 1). Here, we establish the conditions
under which local condensation (bridging) precedes capil-
lary condensation as the chemical potential is increased
towards saturation. Our analysis uses a modified Kelvin
equation not considered in previous works which allows for
an edge contact angle θE which describes the shape of the
menisci pinned at the edges of both patches. Our main new
result is that for a slit maximum wetting contrast in which a
completely wet stripe is embedded within completely
dry wall, the value of the aspect ratio determining the
triple point is maximum and takes a universal value 8=π.
This prediction is tested using microscopic DFT and is
shown to be extraordinarily accurate even for molecularly
narrow slits.
Let us begin with mesoscopic considerations. As men-

tioned above, since the outer wall area is infinitely greater
than that of the patch the global condensation from a
gaslike to liquidlike state occurs at the same chemical

potential δμCC identified by the standard Kelvin equation.
We next need to determine the chemical potential at which
a gaslike phase locally condenses forming a bridge between
the patches. Here, we use a modified Kelvin equation
similar to one recently proposed for opened slits. This
bridge phase is characterized by two circular menisci of
Laplace radius R ¼ γ=δp which separate the liquid within
the bridge from the gas in the outer regions of the capillary.
These menisci are necessarily pinned at the edges of the
patch and meet the walls with an edge contact angle θE
whose value depends on the thermodynamic state, as well
as the properties of the heterogenous slit. However, exactly
at the bridging transition, the value of θE depends only on
the contact angle of the patch θp and the aspect ratio
a≡ L=H; there is no dependence on the outer contact
angle θ since the exposed wall surface area to the vapor
phase is the same for the evaporated and bridge phases.
The situation is closely analogous to condensation in an

open slit and balancing the bulk and surface free-energy
contributions of the evaporated and bridge phases deter-
mines that a local condensation to the bridge phase occurs
at the chemical potential μb ≡ μsatðTÞ − δμb where the shift
is determined by the modified Kelvin equation

δμb ¼
2γ cos θE
LΔρ

: ð2Þ

Here, θE is the edge contact angle whose value at the
bridging transition is given by [30,31]

cos θp ¼ cos θE þ a
2

�
sin θE þ sec θE

�
π

2
− θE

��
ð3Þ

which, as mentioned above, is independent of the proper-
ties of the outer wall.
Comparing the chemical potential shifts (1) and (2)

immediately determines what phases are stable and meta-
stable in the heterogeneous capillary slit. It follows that on
increasing the chemical potential a bridging transition
precedes the global condensation only if θE < θ since
the chemical potential shift δμb > δμCC. In this case on
increasing μ the gaslike phase in capillary first locally
condenses (bridges the walls) near the patch at the chemical
potential μb. On further increasing the chemical potential
the bridge phase eventually condenses to a liquidlike phase
when the chemical potential reaches μCC. During this
process the value of the edge contact angle increases
continuously from its value given by (3) at μb taking the
value θ exactly at μCC. This means that at the condensation
the menisci are no longer pinned at the edges by the
macroscopic forces of tension, i.e., translating the menisci
away from the patch does not alter the macroscopic free
energy. We return to this later in our discussion of
fluctuation effects. On the other hand, if θE > θ the global
condensation occurs prior to the bridging which is only

FIG. 1. Illustration of (a) gaslike, (b) locally condensed bridge-
like, and (c) liquidlike states in a chemically heterogenous slit.
Possible configurations depend on μ.
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ever a possible metastable phase. These two possibilities
are separated by the case θE ¼ θ which is the condition for
a triple point where all three phases coexist.
It follows that for given contact angles θp and θ, the

value of the aspect ratio aT at which a triple point occurs is
given by

aT ¼ 2ðcos θp − cos θÞ
sin θ þ ðπ

2
− θÞ sec θ

: ð4Þ

Only if the aspect ratio a < aT does a bridging transition
precede global capillary condensation. Therefore, as antici-
pated, bridging is only possible if the contact angle in the
patch θp < θ. It is only in this case that the free-energy cost
of creating two menisci is compensated by the greater
affinity of the patches for the liquid. We can also identify
that the condition for the maximum value of the triple-point
aspect ratio. This corresponds to a heterogeneous slit of
maximum contrast (MC) comprising a completely wet
patch (θp ¼ 0) embedded within a completely dry outer
wall (θ ¼ π). These values of the contact angles minimize
the denominator and maximize the numerator in (4) leading
to the intriguing value

amax
T ¼ 8

π
: ð5Þ

Thus, only for a < 8=π will a MC slit exhibit a bridging
transition which precedes a global capillary condensation.
We also note that for a < 1 the value of μb at which this
occurs is less than μsat meaning that the menisci are
concave. For aspect ratio a ¼ 1 the bridging transition
occurs exactly at μsat and the menisci are flat. For a > 1 the
menisci are convex and the bridging transition occurs
at μb > μsat.
We test these predictions using a microscopic DFT to

determine equilibrium density profiles ρeqðrÞ and the
corresponding free energies of possible stable or metastable
states. These are obtained by minimization of the grand
potential functional

Ω½ρ� ¼ F½ρ� −
Z

dr½μ − VðrÞ�ρðrÞ; ð6Þ

where VðrÞ is the external potential exerted by the
heterogenous slit and F½ρ� is the intrinsic free energy
functional of the one-body density ρðrÞ. We concentrate
on the maximum contrast slit geometry and the prediction
(4) for the value of amax

T . Explicit expressions for the
corresponding external potential as well as the approxima-
tive free-energy functional adopted are shown in the
Supplemental Material [31].
We have considered two different values of the patch

width H ¼ 10σ and H ¼ 20σ and for each varied the slit
width L, thus varying the aspect ratio a. For a given aspect

ratio we varied the chemical potential and determined the
equilibrium stable and metastable phases corresponding to
evaporated, bridged, and condensed states. This is achieved
by determining numerically the minimal grand potential
using Picard’s iteration starting from an initial configura-
tion corresponding to these phases. In Fig. 2 we present
results for the grand potential as a function of the chemical
potential for a ¼ 2.3, a ¼ 2.6, and a ¼ 2.8 for the smallest
system size H ¼ 10σ. For the smallest value of a we

(a)

(b)

(c)

FIG. 2. DFT results for the grand potential as a function of the
chemical potential (both in units of ε) for the maximum contrast
slit with θp ¼ 0 and θ ¼ π and H ¼ 10σ. Three values of L are
shown corresponding to the aspect ratios (a) a ¼ 2.3 for which
bridging precedes the global capillary condensation, (b) a ¼ 2.6
our best estimate of the triple point, and (c) a ¼ 2.8 where only
single capillary condensation transition is stable and the bridge
configurations are always metastable. Our estimate to the triple
point a ¼ 2.6 is very close to the predicted value aT as
given by (5).
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observe two kinks in the minimum value of the grand
potential corresponding to bridging and global capillary
condensation transitions as the chemical potential is
increased. On increasing the value of a the kinks move
closer and eventually merge at a value a ¼ 2.6which, even
for this microscopically small patch, is very close to the
prediction (4). For the largest value of a shown there is only
one kink which corresponds to single capillary condensa-
tion. Bridge states also exist but have a higher grand
potential and are therefore metastable. Similar results have
been obtained for larger values of H with the aspect ratio
corresponding to the triple point always very close to the
predicted value 8=π.
To finish our Letter we mention three further points.

First, so far we have supposed that the contact angle of the
patch is less than that of the outer wall. If we reverse this
scenario, so that θp > θ and θp > π=2, then the patch has
greater affinity for the gas compared to the outer wall. In
this case, analogous bridging transitions take place but
involve a bubble of gas that with two menisci separating the
bubble from the outer liquid. Thereafter, the analysis of the
bridging and global condensation transitions remains
the same including the location of the triple point, although
the numerator in (4) is replaced by cos θ − cos θE.
Second, we mention that qualitatively similar phenom-

ena occur in a heterogenous cylindrical pore of radius R
containing a patch of width H for which the local contact
angle is θp. For this we define an aspect ratio acyl ¼ 2R=H.
Again, assuming that θp is less than the contact angle θ of
the outer wall, we must consider the possibility of a local
bridging transition occurring at δp ¼ 2γ cos θcylE =R and a
global condensation occurring at δp ¼ 2γ cos θ=R. The
value of θcylE at the transition is again known from previous
studies of condensation in open pores [30]. The analysis is
analogous to that for the heterogenous slit and setting
θcylE ¼ θ leads to the condition for the value of the aspect
ration acylT . For example, when the patch is completely wet
(θp ¼ 0) the triple point occurs for

acylT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ
1þ cos θ

r
: ð7Þ

It is interesting to compare this with the result for the slit
geometry obtained by setting θp ¼ 0 in (4) displayed in
Fig. 3. Unlike the slit geometry for which the aspect ratio
reaches a maximum value with maximum contrast (θ ¼ π)
the triple-point value of acylT diverges as θ is increased to π.
A triple point therefore does not exist for the maximum
contrast cylinder. This reflects the fact that the for the
cylindrical geometry the surface tension contributions for
the wall-gas and the wall-liquid interfaces scale with the
radius R. There is no such dependence on the wall
separation L for capillary slits.

Finally, we turn our attention to possible fluctuation
effects which are not captured by macroscopic arguments
or our model DFT. Fluctuations do not effect the direct
capillary condensation from a gaslike to a liquidlike state
(occurring for θE < θ or equivalently a > aT) since the
capillary is pseudo–two dimensional. However, they do, at
least in principle, affect the two other possible transitions in
rather different ways. Here, we argue however that they are
not quantitative important. Consider the bridging transition
first. Since the patch width H and wall separation L are
finite the bridging transition is pseudo–one dimensional
and standard finite-size scaling arguments determine that
this first-order transition is not precisely sharp but rounded
on a scale set by expð−γLH=kBTÞ. This is largest for the
bridging transition occurring near the triple point (since the
aspect ratio a ¼ L=H is largest) but even for the smallest
systems we have considered here this is negligibly small.
For example, at low temperatures this implies that the
transition from a gaslike to bridge state is rounded over the
range Δμ=μsat ≈ expð−250Þ. Fluctuation effects are most
subtle for the condensation transition from a bridge phase
to a liquidlike state. If the ends of the capillary are
considered open then the transition can be viewed as the
unbinding of the menisci from the edges of the patch to the
ends of the capillary. Recall that at the condensation phase
boundary θE ¼ θ, so there is no macroscopic free-energy
cost for translating the meniscus away from the edges of the
patch. This allows for the possibility of a second order
phase transition. However, more microscopically, there will
always be local pinning of the menisci near the patch edges
arising from intermolecular forces. If they are strong
enough the menisci remain bound to the patch at μ ¼
μ−CC and the location of the menisci jump discontinuously,
via a first-order transition to the ends of the capillary on the

FIG. 3. Predicted triple-point aspect ratios for the heterogenous
slit and the pore geometries for the completely wet patch θp as a
function of the contact angle θ of the outer wall.
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crossing of the phase boundary. This is what we observe in
the mean-field DFT. In principle, it is possible that thermal
fluctuations in the position of menisci cause it to tunnel
away from the patch edge so that its distance from the edge
diverges continuously as μ is increased to μCC. This is
directly analogous to condensation occurring in a capped
capillary above the wetting temperature of the confining
walls. However, since the line tension controlling the
fluctuations of menisci (in the y direction) is large, of
order γL, it is unlikely that such tunneling occurs and the
menisci always remains pinned to the patch edges at μCC.
This transition therefore also always remains first order and
is accurately described by the classical DFTemployed here.
In this Letter, we have examined the conditions under

which bridging precedes capillary condensation in an
idealized model of a heterogenous capillary slit. Using
the standard Kelvin and a modified Kelvin equation, which
allows correctly for the edge contact of the menisci in the
bridge phase, we have derived a condition for the value of
the aspect ratio L=H which leads to a triple point. Of
particular interest is the existence of an upper universal
value for the aspect ratio for a slit with maximum wetting
contrast. This mesoscopic approach proves to be extraor-
dinarily accurate even for molecularly narrow slits. Even
for walls with single patches a number of extensions of our
work are possible. For example, it would be interesting to
consider how the stability of the bridge phase is affected
when the contact angles of the patches on the two walls are
different and also when the patches are sheared. This is a
topic of future work.

This work was financially supported by the Czech
Science Foundation, Project No. GA17-25100S.

*Corresponding author.
malijevsky@icpf.cas.cz

[1] S. Dietrich, in Phase Transitions and Critical Phenomena,
edited byC.Domb and J. L. Lebowitz (Academic,NewYork,
1988), Vol. 12.

[2] M. Schick, in Liquids and Interfaces, edited by J. Chorvolin,
J. F. Joanny, and J. Zinn-Justin (Elsevier, New York, 1990).

[3] D. Henderson, Fundamentals of Inhomogeneous Fluids
(Marcel Dekker, New York, 1992).

[4] J. W. Cahn, J. Chem. Phys. 66, 3667 (1977).
[5] C. Ebner and W. F. Saam, Phys. Rev. Lett. 38, 1486 (1977).
[6] R. Evans and P. Tarazona, Mol. Phys. 47, 1033 (1982).
[7] R. Lipowsky, Phys. Rev. Lett. 52, 1429 (1984).
[8] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley,

Rev. Mod. Phys. 81, 739 (2009).
[9] E. H. Hauge, Phys. Rev. A 46, 4994 (1992).

[10] K. Rejmer, S. Dietrich, and M. Napiorkówski, Phys. Rev. E
60, 4027 (1999).

[11] A. O. Parry, C. Rascón, and A. J. Wood, Phys. Rev. Lett. 83,
5535 (1999).

[12] A. Malijevský and A. O. Parry, J. Phys. Condens. Matter 25,
305005 (2013).

[13] W. F. Saam, J. Low Temp. Phys. 157, 77 (2009).
[14] P. Lenz and R. Lipowsky, Phys. Rev. Lett. 80, 1920

(1998).
[15] C. Bauer and S. Dietrich, Phys. Rev. E 60, 6919 (1999).
[16] M. Pospíšil, M. Láska, A. O. Parry, and A. Malijevský,

Phys. Rev. E 100, 032801 (2019).
[17] A. B. D. Cassie, Discuss. Faraday Soc. 3, 11 (1948).
[18] R. N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).
[19] R. Evans, J. Phys. Condens. Matter 2, 8989 (1990).
[20] R. Evans, Adv. Phys. 28, 143 (1979).
[21] G. Chmiel, K. Karykowski A. Patrykiejew, W. Rżysko, and

S. Sokołowski, Mol. Phys. 81, 691 (1994).
[22] P. Röcken, A. Somoza, P. Tarazona, and G. Findenegg, J.

Chem. Phys. 108, 8689 (1998).
[23] L. J. D. Frink and A. G. Salinger, J. Chem. Phys. 110, 5969

(1999).
[24] H. Bock and M. Schöen, Phys. Rev. E 59, 4122 (1999).
[25] P. S. Swain and R. Lipowsky, Europhys. Lett. 49, 203

(2000).
[26] H. Bock, D. J. Diestler, and M. Schöen, J. Phys. Condens.

Matter 13, 4697 (2001).
[27] A. Valencia, M. Brinkmann, and R. Lipowsky, Langmuir

17, 3390 (2001).
[28] C. J. Hemming and G. N. Patey, J. Phys. Chem. B 110, 3764

(2006).
[29] M. Schöen, Phys. Chem. Chem. Phys. 10, 223 (2008).
[30] A. Malijevský, A. O. Parry, and M. Pospíšil, Phys. Rev. E

96, 020801(R) (2017).
[31] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.124.115701 for details
of our DFT model and derivation of Eq. (3), which includes
Refs. [32,33].

[32] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
[33] A. Malijevský, J. Phys. Condens. Matter 25, 445006 (2013).

PHYSICAL REVIEW LETTERS 124, 115701 (2020)

115701-5

https://doi.org/10.1063/1.434402
https://doi.org/10.1103/PhysRevLett.38.1486
https://doi.org/10.1080/00268978200100772
https://doi.org/10.1103/PhysRevLett.52.1429
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1103/PhysRevA.46.4994
https://doi.org/10.1103/PhysRevE.60.4027
https://doi.org/10.1103/PhysRevE.60.4027
https://doi.org/10.1103/PhysRevLett.83.5535
https://doi.org/10.1103/PhysRevLett.83.5535
https://doi.org/10.1088/0953-8984/25/30/305005
https://doi.org/10.1088/0953-8984/25/30/305005
https://doi.org/10.1007/s10909-009-9904-0
https://doi.org/10.1103/PhysRevLett.80.1920
https://doi.org/10.1103/PhysRevLett.80.1920
https://doi.org/10.1103/PhysRevE.60.6919
https://doi.org/10.1103/PhysRevE.100.032801
https://doi.org/10.1039/df9480300011
https://doi.org/10.1021/ie50320a024
https://doi.org/10.1088/0953-8984/2/46/001
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1080/00268979400100461
https://doi.org/10.1063/1.476297
https://doi.org/10.1063/1.476297
https://doi.org/10.1063/1.478497
https://doi.org/10.1063/1.478497
https://doi.org/10.1103/PhysRevE.59.4122
https://doi.org/10.1209/epl/i2000-00126-5
https://doi.org/10.1209/epl/i2000-00126-5
https://doi.org/10.1088/0953-8984/13/21/305
https://doi.org/10.1088/0953-8984/13/21/305
https://doi.org/10.1021/la001749q
https://doi.org/10.1021/la001749q
https://doi.org/10.1021/jp056331l
https://doi.org/10.1021/jp056331l
https://doi.org/10.1039/B706674K
https://doi.org/10.1103/PhysRevE.96.020801
https://doi.org/10.1103/PhysRevE.96.020801
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.115701
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.115701
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.115701
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.115701
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.115701
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.115701
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.115701
https://doi.org/10.1103/PhysRevLett.63.980
https://doi.org/10.1088/0953-8984/25/44/445006

