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We report the universal emergence of anomalous fundamental Peregrine solitons, which can exhibit an
unprecedentedly ultrahigh peak amplitude comparable to any higher-order rogue wave events, in the vector
derivative nonlinear Schrödinger system involving the self-steepening effect. We present the exact
explicit rational solutions on either a continuous-wave or a periodical-wave background, for a broad
range of parameters. We numerically confirm the buildup of anomalous Peregrine solitons from strong
initial harmonic perturbations, despite the onset of competing modulation instability. Our results may
stimulate the experimental study of such Peregrine soliton anomaly in birefringent crystals or other similar
vector systems.
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In the past decade, the field of rogue waves has rapidly
grown and blossomed, involving researchers in various
disciplines including oceanography, hydrodynamics,
plasma physics, acoustics, optics and photonics, and even
finance [1–4]. Among all the branches of rogue wave
research, optical rogue waves, originally coined in a
seminal paper by Solli et al. [5], are by far the most
versatile and fast developing topic, thanks to the availability
of reliable lasers, efficient materials, and real-time mon-
itoring technologies [6,7]. In view of the unpredictability
and complexity of rogue waves, the current investigations
concentrate mainly on two different yet interlinked hori-
zons: the study of the deterministic rogue wave events of
integrable models [8–11] and of the emergent statistical
properties of a large ensemble of incoherent waves [12–14].
Both ways enable a deep insight into the fundamental
origin of rogue waves.
As a general building block for understanding rogue

waves, the Peregrine soliton (PS), first proposed by
Peregrine in 1983 [15], plays a central role in modeling
the deterministic rogue wave events [16]. It is a doubly
localized rational solution consisting of quadratic poly-
nomials [10]. Normally, this solution involves a peak
amplitude three times the background level [17–20] and
an arbitrary peak location that agrees well with the fleeting
nature of realistic rogue waves [21]. Considering its
importance, several milestone experiments were conducted
to observe this exotic structure or its variants [8,17,22,23].
Even in coupled nonlinear systems, typical PS structures
exist as well, and are usually shown to have an enhance-
ment factor smaller than 3 [24–28]. Recently, an anomaly
of PS creation in a multicomponent system was reported,

revealing explicitly that the PS structure can involve a peak
amplitude beyond the factor 3 [29]. This is different from
deterministic colliding events of ordinary solitons, which
also entail an ultrahigh amplitude, yet predictable [30,31].
In this Letter, we would like to address an open yet

interesting question: are the fundamental PSs involving an
anomalous peak amplitude universal in physics? And if so,
could their enhancement factor grow to an extent compa-
rable to any higher-order rogue waves? To answer the first
equation, one needs to consider the integrable models
containing very few parameters so as to sieve out the
effects of disturbing parameters. This will be met with the
vector version of the derivative nonlinear Schrödinger
(DNLS) equation [32], which involves only three basic
ingredients: the group-velocity dispersion, Kerr nonlinear-
ity, and self-steepening. With the help of this model and its
general exact PS solutions built on a continuous-wave (cw)
or a periodical-wave background, we find that the PS
structures may possess a surprisingly ultralarge enhance-
ment factor and that the self-steepening effect could play a
crucial role in generating such a PS anomaly.
The vector DNLS equation, which governs the mixing of

two fundamental-frequency (FF) pulses, denoted by u1 and
u2, in a quadratic crystal via a type II highly phase-
mismatched second-harmonic generation process, can be
written as (in dimensionless form) [33–35]
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where the cubic nonlinearity effect has also been taken into
account. Here ξ is the normalized distance, and τ is the
retarded time in a comoving frame at the envelope group
velocity of the FF waves. The parameter s denotes the type
of dispersion, i.e., þ1 for anomalous dispersion and −1
for normal dispersion. The presence of the operator
½1þ iϵð∂=∂τÞ� in the nonlinear term gives rise to the self-
and cross-phase modulation effects and the self-steepening
effect denoted by the parameter ϵ, which becomes signifi-
cant for pulses with spectral widths comparable to the
optical frequency [33,36]. Basically, the parameter ϵ scales
the perturbation to the Manakov system [37] and the latter
is a popular model for optical pulses propagating in
randomly birefringent fibers [38] or for crossing sea waves
occurring in the open ocean [39]. It is known that this
vector DNLS equation is integrable [40] and can therefore
be solved by standard tools such as Darboux dressing
technique.
PS solutions on a continuous background.—It is easy to

show that Eqs. (1) and (2) have the plane-wave solutions

uj0 ¼ aj expðiωjτ − ikjξÞ; ðj ¼ 1; 2Þ; ð3Þ

whose amplitudes (aj), frequencies (ωj), and wave num-
bers (kj) are connected through the dispersion relations

kj ¼
1

2
sω2

j þ ða21 þ a22Þðϵωj − 1Þ: ð4Þ

Following the Darboux transformation procedure in
Refs. [20,41], we obtain a general family of fundamental
PS solutions on such a cw background:
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where M, N, R1;2 are polynomials of ξ and τ, given by

M ¼ θ2 þ s2ν2ξ2 þ η2
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with θ ¼ τ þ ½sμ − ϵða21 þ a22Þ�ξ, η ¼ ϵμþ 1, and
α ¼ ν2ϵ2 þ η2. The real parameters μ and ν in Eqs. (7)
and (8) are determined by two algebraic equations:
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We point out that the above rational PS solutions have
been translated so that their peaks are located on the
origin. Hence, one can readily define the peak-to-
background ratios f½ju1ð0; 0Þj�=a1g and f½ju2ð0; 0Þj�=a2g
as the enhancement factors jf1;2j, respectively, with fj
being given by

fj ¼ 1 −
8ν4ϵ2 þ 4ν2ðϵμþ 1Þð2ϵμþ ϵωj þ 1Þ

ðϵμþ 1Þ2½ðμþ ωjÞ2 þ ν2� : ð11Þ

These factors can be used to quantify the extent to which
each PS component can be uplifted relative to its respective
background. We would like to emphasize that the general
solutions (5) and (6), as well as their enhancement factors
obtained above, were not reported before, to our best
knowledge. When ϵ ¼ 0, our solutions can boil down to
the PS solutions of the Manakov systems [24,25].
It follows easily from Eq. (11) that as ϵ ¼ 0 (i.e., in the

Manakov system limit), the enhancement factors of both
PSs reduce to jfMan

1 j ¼ j1 − f4ν2=½ðμþ ω1Þ2 þ ν2�gj ≤ 3

and jfMan
2 j ¼ j1 − f4ν2=½ðμþ ω2Þ2 þ ν2�gj ≤ 3, which

means that, when the self-steepening effect is absent, the
peak amplitude of each PS component in either dispersion
situation can never exceed the factor 3, as revealed
before [9,24,25].
On the other hand, as δ ¼ ω1 − ω2 ¼ 0, we find

from Eqs. (9) and (10) that μ ¼ −ϵA=s − ω1, ν ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Asð1 − ϵω1Þ − A2ϵ2

p
=s, where A ¼ a21 þ a22. In this sit-

uation, it is easy to see that the solutions (5) and (6) become
decoupled, each having a threefold peak amplitude, as
found in the scalar Kaup-Newell equation [19,20].
In addition to the above two simple cases (ϵ ¼ 0 or

δ ¼ 0), our fundamental PS solutions can exhibit an
unprecedentedly high peak amplitude, in contrast to what
is usually expected for the PS states. Over the years, such
an ultralarge enhancement factor was attributed to the
formation of higher-order rogue waves [20,42]. But now
it is also achievable for the fundamental PS states, even
though they involve only the second-degree polynomials.
To show this, let us first consider the special case for

which the background amplitudes are specified by

a1 ¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2sð1 − ϵω1Þ3

p
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4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2sð1 − ϵω2Þ3

p
3δ2ϵ2 þ ðκϵ − 2Þ2 ;

ð12Þ
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where δ ¼ ω1 − ω2 and κ ¼ ω1 þ ω2. Obviously, it
requires that sð1 − ϵωjÞ > 0, (j ¼ 1, 2), to make both
amplitudes real. In this case, the algebraic Eqs. (9) and (10)
will admit only one pair of real root ðμ; νÞ:

μ ¼ δ2ϵðκϵ − 8Þ − κðκϵ − 2Þ2
6δ2ϵ2 þ 2ðκϵ − 2Þ2 ; ð13Þ

ν ¼
ffiffiffi
3

p
δ½δ2ϵ2 − ðκϵ − 2Þ2�

6δ2ϵ2 þ 2ðκϵ − 2Þ2 : ð14Þ

Substituting the above μ and ν formulas into Eq. (11)
reveals that the maximum enhancement factor can reach as
high as 17, much larger than that shown in Ref. [29].
Typical results are shown in Fig. 1, where an eightfold peak
amplitude in the u1 component is exhibited, in either the
anomalous [Figs. 1(a) and 1(b)] or normal dispersion
[Figs. 1(c) and 1(d)] situation. This represents an anomaly
of the PS formation, as, when ϵ vanishes, the peak
amplitude is only twice the background height, as shown
in Figs. 1(e) and 1(f). Clearly, in such an unusual PS
dynamics, the unique role of the self-steepening effect can
be highlighted, which induces a dip in the structure of the

strong component, while making Peregrine rogue wave
soar on the weak component.
We show further that our PS solutions can allow two

different PS structures for each component under condi-
tions other than Eq. (12), and one PS structure would have a
very large amplitude factor, even approaching infinity. As
an example, let us consider the amplitude condition:

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1 − ϵω1Þ3
ϵ2ðκϵ − 2Þ2

s
; a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1 − ϵω2Þ3
ϵ2ðκϵ − 2Þ2

s
; ð15Þ

where sð1 − ϵω1;2Þ > 0, the same as in Eq. (12). Then, it is
easy to solve the algebraic Eqs. (9) and (10) for ðμ; νÞ. One
can find that under the specific condition (15), there will
exist two pairs of valid values of ðμ; νÞ, and hence two
enhancement factors for each PS component, as shown in
Fig. 2, where we present the evolutions of f1 and f2 with
respect to δ, for given parameters ϵ ¼ 1, s ¼ −1, and
κ ¼ 6. As seen, when δ ¼ −2, the u1 component has an
enhancement factor jf1j ¼ 11.0 (blue cross) and 3.51 (red
circle), while the u2 component has a factor jf2j ¼ 1.66
(blue cross) and 1.11 (red circle), respectively. The corre-
sponding PS structures are demonstrated in the insets in
Fig. 2. Apparently, these two PS structures can coexist on
the same continuous background, as revealed in Ref. [26].
Moreover, it suggests that as δ → �ð2=ϵ − κÞ (here
δ →∓ 4), the enhancement factor of the u1 or u2 compo-
nent can approach infinity, although in this case its back-
ground amplitude a1 or a2 will approach zero too, as
indicated by the green dashed line in Fig. 2.
PS solutions on a periodical background.—Further-

more, the rational solutions that represent the PS states
built on a periodical-wave background [43,44] can be
given by

FIG. 1. Unusual fundamental PSs in the (a),(b) anomalous
dispersion (s ¼ 1) and (c),(d) normal dispersion (s ¼ −1) re-
gimes, normalized to their respective backgrounds (letting
ϵ ¼ 1). The other parameters are given by (a),(b) ω1 ¼ −1=4,
ω2 ¼ −11=4, a1 ¼

ffiffiffi
5

p
=7, a2 ¼ 3

ffiffiffiffiffi
15

p
=7; (c),(d) ω1 ¼ 2,

ω2 ¼ 4, a1 ¼ 2=7, a2 ¼ 6
ffiffiffi
3

p
=7. The specific PS states in the

Manakov system (ϵ ¼ 0) are plotted in (e) and (f), with s ¼ 1,
ω1 ¼ 1=2, ω2 ¼ −1=2, a1 ¼ a2 ¼ 1.

FIG. 2. Evolutions of f1 and f2 versus δ ¼ ω1 − ω2 for ϵ ¼ 1,
s ¼ −1, and κ ¼ 6. The green dashed line gives the values of a1
and a2 specified by Eq. (15), which can be read from the vertical
axis that the black arrow points to. In each panel, the insets show
the PS structures at δ ¼ −2, with the upper and lower plots
corresponding to the red solid circle and blue cross, respectively.
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u1 ¼
ffiffiffi
2

p

2
ðU þ VÞ; u2 ¼

ffiffiffi
2

p

2
ðU − VÞ; ð16Þ

where U and V are defined by Eqs. (5) and (6), with all the
parameters kept the same. As a typical example, we
demonstrate in Fig. 3 two pairs of PS solutions that coexist
on the same periodical wave background, in the normal
dispersion regime. For direct comparison, we exploited the
same parameters as used in the insets in Fig. 2. This set of
background parameters gives two pairs of valid values
ðμ; νÞ (see caption), each yielding a PS structure on a
periodical wave background. It is seen that in Figs. 3(a)
and 3(b), the PS solutions have a larger transversal size and
tend to interfere with the periodical waves, while main-
taining a PS profile as a whole. However, in Figs. 3(c) and
3(d), the PS solutions are smaller in size and thus can
manifest predominantly on the periodical background. In
the latter situation, the peak-to-background factor is around
3.5, lower than the factor 11 as indicated in Fig. 2, but still
higher than 3.
To see the mechanism behind this PS anomaly, one may

evaluate the modulation instability (MI) by perturbing the
background fields (3) as uj ¼ uj0f1þ pj exp½−iΩðβξ −
τÞ� þ q�j exp½iΩðβ�ξ − τÞ�g (j ¼ 1, 2), where pj and qj are
small parameters, and Ω and β are positive and complex,
respectively [1,10]. Then, substitution of these perturbed
solutions into Eqs. (1) and (2) followed by linearization
yields a quartic equation of β, from which the gain γh ¼
ΩjImðβÞj in any dispersion cases can be calculated.
Figures 4(a) and 4(b) show the gain map γh versus Ω
and δ for the DNLS and Manakov systems, respectively, in
the normal dispersion case. It is exhibited that in the
Manakov system, the baseband gain spectra located

symmetrically in a limited range of δ as Ω → 0 [25],
whereas in the DNLS system, they may exist in a broad δ
region, asymmetrically yet more strongly (see the white
dashed line). The latter can lead to the anomalous PS
behaviors in a broad range of parameters, according to the
baseband MI theory [10,25,45]. For instance, for the
specific parameters used in Figs. 1(c) and 1(d), the gain
maximum is γmax

h ≈ 1.30 occurring at Ω ≈ 1.87. This small
gain value suggests that an eightfold PS structure could be
reproduced numerically.
Finally, to confirm our analytical predictions, we per-

formed extensive numerical simulations of Eqs. (1) and (2),
using the split-step Fourier method [29,45], where the
nonlinear step is treated in the time domain, while the linear
step is evaluated pseudospectrally. Typical simulation
results are shown in Fig. 5, where we use the same system
parameters as in Figs. 1(c) and 1(d). We first show in
Figs. 5(a) and 5(b) that, evolving from the initial analytical
profiles at ξ ¼ −3, an eightfold-amplitude PS for the u1
field and a much gentler structure for the u2 field are
exactly reproduced. Then, we put small-amplitude har-
monic waves on these initial profiles at ξ ¼ −1 and find
that the whole PS structures still emerge [see Figs. 5(c) and
5(d)]. In this situation, due to the competing MI process,
some even higher-amplitude Peregrine rogue waves, with a
factor of nearly 12, manifest as well (at around ξ ¼ 2). This
is not surprising because the amplitude condition Eq. (12)
that we exploited here will be violated to an extent under
strong initial perturbations, resulting in the appearance of
coexisting rogue waves that may have an even higher
enhancement factor, as suggested in Fig. 2. Lastly, we
confirm numerically that PS solutions of unprecedentedly
large factor can be excited from a turbulent wave field. To
do so, we use the plane-wave solutions (3) at ξ ¼ −1 as
initial conditions, perturbed by five harmonic waves of
random strength. This noisy background subsequently
develops into a turbulent sea of different waves, among

FIG. 3. Surface (top) and contour (bottom) plots of fundamental
PS solutions on the same periodical wave background, with
parameters ϵ ¼ 1, s ¼ −1, ω1 ¼ 2, ω2 ¼ 4, a1 ¼ 1=4, and a2 ¼
3

ffiffiffi
3

p
=4. (a),(b) ðμ; νÞ ¼ ð−17=8þ ffiffiffi

3
p

=8; 3
ffiffiffi
5

p
=8 −

ffiffiffiffiffi
15

p
=8Þ; (c),

(d) ðμ; νÞ ¼ ð−17=8 − ffiffiffi
3

p
=8; 3

ffiffiffi
5

p
=8þ ffiffiffiffiffi

15
p

=8Þ.

FIG. 4. Maps of MI gain γh versus Ω and δ for the (a) DNLS
and (b) Manakov systems, under otherwise identical parameter
condition, i.e., κ ¼ 6, a1 ¼ 2=7, and a2 ¼ 6

ffiffiffi
3

p
=7. The inset in

(a) shows the gain profile γh at δ ¼ −2, and the yellow cross
indicates the maximum gain γmax

h ≈ 1.30 at Ω ≈ 1.87.
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which one eightfold PS structure, at around ðξ; τÞ ¼
ð2;−5Þ, could be singled out, see the red arrow in
Figs. 5(e) and 5(f). It is hence anticipated that these
deterministic PS structures might be observed in a labo-
ratorial environment [46].
In summary, we have drawn several significant points

here. First, to achieve the ultrahigh PS structures, a
multicomponent nonlinear coupling is indispensable, as
it enables the energy transfer between different components
so that one component can grow at the expense of the other
[47]. Second, the PS structure of ultrahigh factor always
forms on a weaker background. We may argue that the
stronger background field serves as an energy reservoir to
pump the weaker one via a two-wave coupling [48],
producing, in realistic noisy conditions, a turbulent wave
field that gives birth to the anomalous PS structures. Last,
being at the origin of the PS anomaly, the role of the self-
steepening effect can not be overemphasized [29]. As the
self-steepening effect is inherent in many systems (e.g.,
quadratic nonlinear media [33,34], optical fibers and wave-
guides [38,49,50], and alkali vapors [51]), this also sug-
gests the universality of our PS solutions to be observed in
diverse settings. For example, we may launch two FF
pulses of picosecond duration, which can mimic quasi-cw
signals, in a twin KTiOPO4 crystal device to trigger a
temporal type-II (oeo) second-harmonic generation with a

low walk-off angle [52]. In this case, the two-wave
anomalous PS dynamics may be seen in the highly
phase-mismatched regime.
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