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Feynman’s path integral approach is to sum over all possible spatiotemporal paths to reproduce the
quantum wave function and the corresponding time evolution, which has enormous potential to reveal
quantum processes in the classical view. However, the complete characterization of the quantum wave
function with infinite paths is a formidable challenge, which greatly limits the application potential,
especially in the strong-field physics and attosecond science. Instead of brute-force tracking every path one
by one, here we propose a deep-learning-performed strong-field Feynman’s formulation with a
preclassification scheme that can predict directly the final results only with data of initial conditions,
so as to attack unsurmountable tasks by existing strong-field methods and explore new physics. Our results
build a bridge between deep learning and strong-field physics through Feynman’s path integral, which
would boost applications of deep learning to study the ultrafast time-dependent dynamics in strong-field
physics and attosecond science and shed new light on the quantum-classical correspondence.
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The wave function and the temporal evolution contain all
the information of quantum physics. However, they might
be possibly the hardest to grasp in the classical world.
Seventy years ago, Feynman proposed a path integral
approach that has been viewed as the “sum over paths
or histories” version of quantum mechanics; i.e., the wave
function can be represented as a coherent superposition of
contributions of all possible spatiotemporal paths [1,2].
Even though Feynman’s path integral (FPI) has been
considered as the most fundamental way to interpret the
quantum mechanics and answer what is the nature of
measurements, the complete characterization of quantum
wave packets with all possible paths is formidable due to
track ergodicity. Typically, only a very limited amount of
paths could be accessed, and therefore only a reduced
amount of information of quantum wave packets could be
obtained in different approximation methods so far.
The development history of semiclassical methods based

on FPI in strong-field physics, from the strong-field
approximation (SFA) to the Coulomb corrected strong-
field approximation (CCSFA) and quantum trajectory
Monte Carlo (QTMC) methods, also proves that the more
trajectories have been adopted, the more information could
be extracted [3–24]. As a result, despite the notable success
of these methods, there still exists a large number of

unexplored regimes, including the open question about
whether one could truly achieve the quantum-classical
correspondence. Actually, with increasingly sophisticated
experiments, the limitation of existing semiclassical meth-
ods based on FPI for reproducing and explaining some
quantum phenomena has been becoming increasingly
evident due to the limited amount of paths, especially
for the new attosecond measurements where a series of
high-resolution photoelectron spectra with different pump-
probe delays are needed to obtain attosecond time-resolved
movies of electrons [25–32].
Since the game Go was mastered by deep neural

networks (DNNs), deep learning (DL) has received
extensive attention [33,34]. Recently, this technique has
powered many fields of science, including planning
chemical syntheses [35], acceleration of superresolution
localization microscopy, and nudged elastic band calcu-
lations [36–39], classifying scientific data [40,41], solv-
ing high-dimensional problems in condensed matter
systems [42–48], reconstructing the shape of ultrashort
pulses [49], and so on. However, to our knowledge, its
power in strong-field physics has not yet been excavated.
As a result, it is very important to figure out (i) whether
and how DL could be used to solve the problems in
strong-field physics and attosecond science, and (ii) could
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DL help discover new physics in these rapidly developing
fields?
Here we demonstrate that FPI provides a good break-

through point for DL to inroad strong-field physics and
attosecond science. We identify that, assisted by a multi-
layer perceptron (MLP) to preclassify data of electron
trajectories [50], the proposed DNNs can be trained with
only input and output data of few available sample
trajectories, without knowing in advance the detailed
dynamics of the sample trajectories, and then create a
predictive tool that directly predicts the final results of
arbitrary trajectory given its initial conditions. This allows
one to perform the FPI in strong-field physics using DL-
predicted data, which would break the bottleneck of
conventional semiclassical methods due to the large
computation cost of ergodic tracing trajectories. The
high efficiency of deep-learning-performed strong-field
Feynman’s formulation (DLPSFFF) thus allows us to tackle
really tough tasks in which huge amounts of data are far
beyond the processing capacity of existing methods in
strong-field physics. Moreover, we show that the MLP
itself is a powerful tool to classify trajectories and helps
reveal the underlying physics. Our results provide a
promising technique not only for exploring the new physics
of ultrafast electron dynamics in attosecond measurements,
but also for approaching the limit of the quantum-classical
correspondence in the fundamentalism of FPI.
We take the CCSFA as an example since it has shown

broad prospect in interpretation of strong-field experiments
[13,15,19,25]. It should be noted that the proposed strategy
is not limited to the CCSFA, but can be extended to other
approaches based on FPI in strong-field physics and
attosecond science. The architecture of the DNNs is shown
in Fig. 1. The first DNN provides initial conditions of

electrons emerging in the continuum after tunneling. The
second and third ones predict the phase and final momen-
tum, respectively.
In the CCSFA method, the initial conditions of electron

trajectories appearing in the continuum after quantum
tunneling are obtained by solving the saddle point equation
(see Supplemental Material [51]). In this stage, the input
data are a series of asymptotic momentum P, and the output
data are the real and imaginary parts of the saddle point
ts ¼ tr þ iti, respectively. Usually, it is very time consum-
ing to search the saddle points in a complex time plane,
particularly for complicated laser electric fields; whereas,
using DL, this can be easily done with a high accuracy and
an ignorable cost (see Supplemental Material [51]). For
other semiclassical methods, like time sampling CCSFA
and QTMC methods, where the initial conditions of space-
time paths including its weight can be obtained by other
methods [16–18,22], this step can be skipped.
The main challenge for applying DL to perform strong-

field FPI lies in whether DNNs could blindly learn and
predict the complex ultrafast time-dependent electron
dynamics from a limited amount of raw sample data without
knowing any mathematical functions in advance. To this
end, both the final momentum and phase of path should be
accurately predicted. In our Letter, the training set consists
of 5 × 105 sample trajectories that can be quite easily
obtained by the numerical solution of the time-dependent
Newton equation (TDNE) with Coulomb interaction and
the path integral in the CCSFA (see Supplemental Material
[51]). The test set consists of 1 × 105 trajectories, which are
not included in the training set. It is much more difficult for
DNNs to learn the mapping relationship of the final phase
since it is the integral over each time step along a temporal
and spatial path. In the following, we mainly show the
results for the phase Sðp; tsÞ.
We find that, for simple cases, e.g., SFA in which

Coulomb interaction is neglected, a simple artificial neural
network (ANN) with only one hidden layer with 30
neurons can be well trained to reproduce the test results
(see Supplemental Material [51]). This is consistent with
the conclusions of very recent work that, for simple systems
like a pendulum, the ANN could recover similar repre-
sentation with the one-dimensional TDNE only from given
samples [54]. Moreover, it has been demonstrated that
ANNs can be used to solve differential equations for
applications to the calculation of cosmological phase
transitions [55]. However, here we find that when the
Coulomb potential and the spatial gradient are fully
accounted for and the TDNE contains the derivatives with
respect to both time and space, DNNs fail to learn the map
relationships even though three hidden layers with 250
neurons in each layer are adopted. Most of predicted values
deviate from the true ones obtained by CCSFA simulation
[see Fig. 2(g)]. Further, increasing neurons and hidden
layers could not improve the performance of DL.

FIG. 1. DNNs encoding the time-dependent dynamics in
photoemission. Schematic illustrations of DL to learn the map-
ping relationships of the saddle point of quantum complex
emission time, finial momentum, and phase, respectively. Fully
connected multilayer neural networks perform both of the
forward propagation and backpropagation algorithms, which
repeatedly adjust the weights of the connections to minimize
the loss.
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To find the reasons for such failure due to the complexity
of Coulomb interaction, we analyze the final phase dis-
tributions with initial momenta in the training and test
datasets. It can be found that the phase distribution is very
flat and smooth over a large area [denoted by arrow “1” in
Fig. 2(a)], which is very similar to that in the SFA result
(see Supplemental Material [51]). The sample analysis
indicates that these are direct electron trajectories that do
not revisit the parent ion after emerging in the continuum
[see the left inset of Fig. 2(h)]. However, some peaks and
obvious fluctuation can be seen in the area [denoted by
arrow “2” in Fig. 2(a)], which is absent in the SFA result.
The sample analysis shows that these electrons undergo at
least one collision with the ion, as shown in the left inset of
Fig. 2(i). It is physically reasonable that, during the process
of collision, the electrons are very close to the Coulomb
singularity, and a tiny difference in spatial position would
have a huge impact on the final momentum and phase due
to the large spatial gradient near the singularity. All these
indicate that the data distribution of initial states have
indeed already encoded the information of the time-
dependent dynamics. Moreover, the features of data

distributions are quite different for different types of
trajectories. Obviously, the data of direct and rescattered
electron trajectories with different dynamic processes are
mixed up in the set. Therefore, we infer that, due to the
diversity of data, DNNs cannot find a unified mapping
relationship between initial and final states for different
types of space-time paths.
To overcome this challenge, we propose to employ

multiple DNNs to learn different mapping relationships
and predict directly the final results for different types of
trajectories. However, to perform this DL strategy, one
could be up against another difficulty, that is, to divide the
data of initial conditions of arbitrary electron trajectory
into different groups without knowing the time-dependent
dynamics in advance. For a conventional calculation
strategy, it is impossible to classify trajectories only with
the data of initial conditions without tracing the space-time
paths. Here we construct a fully connected multilayer feed
forward network, known as MLP, with three hidden layers
to classify the data of direct and scattered trajectories. A
similar network has recently been used to identify the phase
of condensed matter [43].
To train the MLP, the sample data need to be labeled first.

We use “1” for the direct trajectories and “−1” for the
scattered ones during the course of sample simulation. The
training process is to build a mapping relationship between
the input, i.e., the initial conditions of the trajectories, and
their labels. After being trained, the MLP will output a
value between −1 and 1 for given initial conditions of
arbitrary trajectory. Figure 2(e) shows the output label
values as a function of the input initial momentum. It can be
seen that most of the output values have already been −1 or
1, and some discrete points distribute at the margins of
these two parts. By examining the trajectories correspond-
ing to these discrete points, we find that these trajectories
are slightly influenced by the Coulomb potential and
indeed intermediate between scattered and direct trajecto-
ries. Here we classify the test data completely by choosing a
threshold zero and setting to one when the output label
value is larger than or equal to 0, otherwise, setting to −1.
Compared with the true label distribution of the test set [see
Fig. 2(d)], the MLP works very well [see Fig. 2(f)], which
demonstrates that the characters of trajectories with
different dynamics have already been encoded in the data
of initial conditions, and the MLP can extract the informa-
tion of electron dynamics and identify different types of
trajectories only from the initial conditions [see Figs. 2(b)
and 2(c)].
After the preclassification, we then feed the classified

input data into the corresponding DNNs trained with the
two subsets of direct and scattered samples, respectively,
and compare the predicted outputs with the true values in
the test subset. One can see that both of the two DNNs
learn very well [see Figs. 2(h) and 2(i)], and the errors, i.e.,
the difference between the true and predicted phase

FIG. 2. Deep learning of phase. (a) The test dataset. (b),(c) Two
labeled subsets after classification with MLP (see the text). The
black numbers and arrows in (a) denote different mapping
relationships in the dataset. (d) The true label distribution of
the test set. (e) The original output label values by MLP. (f) The
final classification of the test set by MLP. (g)–(i) Histograms of
the true vs predicted phases for test data corresponding to (a)–(c).
The right insets in (g)–(i) show the distribution of error away
from the perfect predictions. The left insets in (h) and (i) show the
typical electron trajectories in the corresponding data. An argon
atom with Ip ¼ −0.579 a:u: was ionized by a linearly polarized
ultrashort few-cycle laser pulse at wavelength of 800 nm and peak
intensity of 1 × 1014 W=cm2.
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Sðp; tsÞtrue − Sðp; tsÞDL, for both direct [the right inset of
Fig. 2(h)] and rescattered [the right inset of Fig. 2(i)]
electron trajectories are located mainly around zero. The
same procedure can be applied to train DNNs for learning
the final momentum of photoelectrons.
To test the validity of the DLPSFFF, we adopt the

ultrafast ionization of a hydrogen atom subject to an
elliptically polarized laser pulse with a ellipticity 0.88 at
a wavelength of 800 nm and peak intensity of 1 ×
1014 W=cm2 [see Figs. 3(a)–3(e)] as an example, which
are the same parameters of a recent experiment [56] to
determine “tunneling times,” the fundamental issue of
quantum mechanics and attosecond science.
Figure 3(a) shows the photoelectron momentum distri-

bution (PMD) constructed with only the sampled training
data of 5 × 105 trajectories. Actually, these samples are
very few and not even enough to form interference
structures. After being trained only with data of these
few sample trajectories, the DNNs can predict directly the
final momentum and phase of arbitrary trajectory with
negligible calculation cost. Figure 3(c) shows the PMD
constructed with the DL-predicted data. For comparison,
the number of trajectories in the DLPSFFF is same as that
in the CCSFA simulation [Fig. 3(b)]. Moreover, we also
present the quantum result, i.e., the numerical solution of
the time-dependent Schrödinger equation (TDSE),
as a benchmark [see Fig. 3(d)]. The DL-predicted PMD
[Fig. 3(c)] agrees well with the CCSFA and TDSE results
[see Figs. 3(b) and 3(d)], all of which show the above-
threshold ionization peaks, one of typical interference

structures in strong-field photoionization [57,58].
Notably, the DL-predicted photoelectron angular distribu-
tion reproduces exactly the CCSFA result and the numeri-
cal solution of the TDSE [Fig. 3(e)], which demonstrates
the excellent performance of the DLPSFFF.
It should be stressed that the DL-prediction strategy is

much faster than ergodic simulation in conventional meth-
ods. For example, tracing 1 × 104 trajectories one by
one in CCSFA simulation takes 204.4 s on a single CPU
processor, while the prediction of same number of
data by DLPSFFF only takes 0.43 s. Actually, the more
trajectories are needed, the more powerful performance
DLPSFFF shows.
The high performance of the DLPSFFF provides unprec-

edented opportunities to attack unsurmountable tasks by
usual semiclassical methods and help uncover new physics.
Figures 3(f) and 3(g) show another example. The quantum
TDSE simulation shows clearly an undetected oblique
interference structure [denoted by blue solid lines in
Fig. 3(i)] that is absent in the usual semiclassical CCSFA
simulation, even with 108 trajectories [see Fig. 3(g)]. It
should be noted that the calculation cost of simulating 108

trajectories in semiclassical methods has already been very
large [25], but these are actually a very small fraction of all
possible paths required by the fundamentalism of FPI. As a
result, it is quite reasonable that some new physics might be
lost due to the reduced amount of trajectories in conventional
simulations.
To reproduce the TDSE result, we trained the DNNs with

5 × 105 sample data of trajectories. Again, the quantum

FIG. 3. Comparison between the conventional simulations and the DLPSFFF predictions. The PMDs constructed with (a),(f) 5 × 105

sample training data, (b),(g) 1 × 108 trajectories simulated by the original CCSFA treatment, (c) 1 × 108, and (h) 1 × 1010 data predicted
by DLPSFFF, and (d),(i) quantum TDSE results. (e) The comparison of photoelectron angular distributions simulated by the CCSFA and
TDSE with that predicted by DLPSFFF. (j) The photoelectron yield along px0 ¼ −1 a:u: (the yellow dashed line) in (f)–(i). The
parameters used in simulations are (upper rows) a hydrogen atom was ionized by a elliptically polarized laser pulse with a ellipticity 0.88
at wavelength of 800 nm and peak intensity of 1 × 1014 W=cm2 (lower rows), the same as in Fig. 2.
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interference was hardly recognized in the constructed PMD
[see Fig. 3(f)]. After trained with these few available
sample data, it is quite easy for the DLPSFFF to predict
directly the final momentum and phase for 1 × 1010

trajectories [see Fig. 3(h)]. The predicted PMD now clearly
shows the oblique interference structure in the TDSE result.
If ergodic tracing of all these trajectories with conventional
semiclassical methods, the calculation cost would be huge
due to the exponential increase of the number of paths.
Figure 3(j) shows the photoelectron yields along the yellow
dashed line for different cases in Figs. 3(f)–3(i). For the
case only with sample data of classical trajectories (green
line) and the semiclassical simulation with 108 trajectories
(blue line), only noise can be detected, whereas good
agreement is achieved between the DLPSFFF result con-
structed with 1 × 1010 predicted data of trajectories (red
line) and the TDSE result (black line). As a result, the
DLPSFFF provides a powerful tool to push toward the
limit of the classical-quantum correspondence and the
fundamentalism of FPI.
Moreover, we show that the MLP and preclassification

scheme can help reveal the underlying physics. We dem-
onstrated that the oblique interference structure originates
from the interference of large-angle forward-scattering
electron trajectories (see Supplemental Material [51]).
Specifically, the interference of electrons with different
scattering angles but the same final momentum induces this
novel structure. These large-angle forward-scattering tra-
jectories are very close to the core during the process of
scattering, hence their proportion in the total trajectories is
relatively small. Only when the number of the total
trajectories is very huge could the interference between
them be visible. Since these trajectories are very close to the
core, they could carry the information about the parent ion.
Therefore, the predicted interference fringes, and thus the
underlying physics, might be used to image atomic and
molecular spatiotemporal dynamics. This needs to be
investigated in future work.
In summary, we introduce a computational strategy that

utilizes DL to implement Feynman’s formulation in strong-
field physics, therefore getting over the drawback of
inherent brute-force calculation of existing methods. Our
results demonstrate that DNNs can be well trained with a
very small number of samples, which can only constitute a
fuzzy outline of observables. Once trained, the DLPSFFF
can predict directly the final results for as many trajectories
required in reconstructing high-resolution spectra. More-
over, our results show that the preclassification scheme is
an efficient way to tackle complicated problems where
trajectories are very diverse and uncover the underlying
physics in strong-field physics. The feasibility study in this
Letter would unlock the great potential of combined DL
and FPI in analyzing and predicting strong-field exper-
imental phenomena, which will lead to not only over-
coming challenges beyond today’s computational capacity

and methods, but also touch on the fundamental issue of the
quantum-classical correspondence.
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