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In this Letter we discuss new soft theorems for the Goldstone-boson amplitudes with nonvanishing soft
limits. The standard argument is that the nonlinearly realized shift symmetry leads to the vanishing of
scattering amplitudes in the soft limit, known as the Adler zero. This statement involves certain
assumptions of the absence of cubic vertices and the absence of linear terms in the transformations of
fields. For theories which fail to satisfy these conditions, we derive a new soft theorem which involves
certain linear combinations of lower point amplitudes, generalizing the Adler zero statement. We provide
an explicit example of the SUðNÞ=SUðN − 1Þ sigma model which was also recently studied in the context
of U(1) fibrated models. The soft theorem can be then used as an input into the modified soft recursion
relations for the reconstruction of all tree-level amplitudes.
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Introduction.—In this Letter we connect two different
topics that have been intensively studied in the past few
years: soft limits of scattering amplitudes in effective field
theories and the U(1) fibrated CPðN − 1Þ sigma models.
The tree-level S matrix in these models exhibits a very
special behavior in the soft limit which gives rise to the new
type of soft theorems, distinct from the usual Adler zero.
Sigma models.—The U(1) fibrated CPðN − 1Þ models

represent a class of sigma models interpolating between
CPðN − 1Þ and S2N−1 target spaces [1–3]. These models
correspond to the cosets ½ðSUðNÞ=SUðN − 1Þ × Uð1ÞÞ�×
Uð1Þ. For brevity, in the following we refer to these models
as SUðNÞ=SUðN − 1Þ. The above class contains an
extremely interesting example of N ¼ 2, including CP(1)
and S3 models, both being integrable and exactly solvable
in two spacetime dimensions [3–6]. The algebraic form of
the interpolating Lagrangian is

L ¼ 1

2λ2

�� X
a¼1;2;3

JaμJaμ
�
− κJ3μJ3μ

�
; ð1Þ

where the current Jμ is defined as

Jμ ¼ U†∂μU≡ 2i
X

JaμTa; Jaμ ¼ −iTrðJμTaÞ: ð2Þ
Here U is an arbitrary x-dependent matrix, UðxÞ ∈ SUð2Þ,
the generators are proportional to the Pauli matrices,

Ta ¼ 1
2
τa, and κ is a numerical deformation parameter.

If κ ¼ 1, the theory is equivalent to the CP(1) model, while
at κ ¼ 0 it reduces to the SUð2Þ × SUð2Þ=SUð2Þ principal
chiral model (PCM) whose target space is S3. For arbitrary
N we can extend Eq. (1) as follows:

L ¼ 1

2λ2
X2N−2

a¼1

�
ðJN2−2NþaÞ2 þ 1 − κ

N
ðJN2−1Þ2

�
: ð3Þ

Scattering amplitudes.—Recently, there has been huge
progress in new methods for the calculation of on-shell
scattering amplitudes in quantum field theory (QFT). While
most work has been focused on gauge theory and gravity,
especially with maximal supersymmetry, new surprising
results have been obtained in the case of effective field
theories (EFTs). The general approach is to fix the
amplitude uniquely by imposing certain sets of constraints.
The universal example is a tree-level factorization on poles,

lim
P2→0

An ¼
XALAR

P2
; ð4Þ

where the sum runs over internal states. The set of all
factorizations is enough to completely specify the tree-level
S matrix in a large class of QFTs, called on-shell con-
structible, including gauge theories or gravity, and it can
then be calculated using the recursion relations [7].
This does not apply to EFTs due to the presence of

unfixed contact terms with no poles, which originate from
higher-dimensional operators in the Lagrangian. In Ref. [8]
it was shown that when the amplitude vanishes for one of
the momenta going to zero, we can impose this information
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as a constraint and use soft recursion relations for on-shell
reconstruction. This singles out a set of exceptional EFTs
where all coefficients in the Lagrangian are fixed by the
requirement of a certain degree of vanishing, An ¼ OðpσÞ,
in the soft limit [8–14].
The primary example is the PCM describing the sponta-

neous symmetry breaking SUðNÞ × SUðNÞ → SUðNÞ. It
has been known since 1970 [15] that the requirement of the
vanishing soft limit of amplitudes, known also as the Adler
zero, on any two-derivate theory specifies nonlinear sigma
model (NLSM) as a unique solution. In Ref. [16] it was
found that in this model the group part of tree-level
amplitudes can be stripped, similar to Yang-Mills ampli-
tudes, dramatically simplifying the calculations.
Adler zero.—First we review the standard textbook

derivation of the Adler zero for amplitudes of Nambu-
Goldstone bosons (NGBs). We start with the theory for the
single NGB corresponding to the spontaneous breaking of
one-parameter continuous symmetry. The NGB couples to
the associated Noether current NμðxÞ with a strength
parametrized by the decay constant F:

h0jNμðxÞjϕðpÞi ¼ −ipμFe−ip·x: ð5Þ

The matrix element of this current between physical states
has a pole for p2 → 0, and the residue corresponds to the
scattering amplitude for the NGB emission. For the element
between out state hαj and in state jβi, we get

hαjNμð0Þjβi ¼ F
pμ

p2
Anðαþ ϕðpÞ; βÞ þ RμðpÞ: ð6Þ

Here Anðαþ ϕðpÞ; βÞ is the on-shell amplitude which
involves emission of the state ϕ with momentum p, where
pμ ¼ Pμ

β − Pμ
α is the difference between incoming and

outgoing momenta, and RμðpÞ is the regular function for
p2 → 0. Because of the conservation of the current, we
have pμhαjNμð0Þjβi ¼ 0 and, therefore,

Anðαþ ϕðpÞ; βÞ ¼ −
1

F
pμRμðpÞ: ð7Þ

Suppose that RμðpÞ is regular also in the limit p → 0. This
is an additional assumption which does not follow auto-
matically from the standard polology. Then the amplitude
An vanishes if the NGB momentum is soft,

lim
p→0

Anðαþ ϕðpÞ; βÞ ¼ 0: ð8Þ

This is the statement of the Adler zero. The same argument
applies to the theory with multiple Goldstone bosons. To
summarize, we have the nonperturbative Adler zero pro-
vided the matrix element hαjNμð0Þjβi of the Noether
current corresponding to the spontaneous symmetry break-
ing has no other singularity for p → 0 besides the NGB

pole. Therefore, the violation of the Adler zero is possible
only when there are additional singularities in the matrix
element of the Noether current. This is achieved in the case
when the Noether current can be inserted into the external
lines of the amplitude Anðα; βÞ, i.e., when there are
quadratic terms in the expansion of the operator Nμ in
the elementary fields. There are two sources of these
quadratic terms: (1) the presence of cubic vertices in the
Lagrangian and (2) the presence of linear terms in the
nonlinearly realized symmetry transformation correspond-
ing to the Noether current Nμ. Schematically,

δϕ ¼ aþ bϕþOðϕ2Þ; b ≠ 0:

These two conditions are not sufficient: even when at
least one of the above conditions is satisfied, the theory can
still have the Adler zero—a more detailed analysis is
needed. Note that the cubic vertices can always be removed
by means of field redefinitions, as there are no on-shell
three-point amplitudes (apart from ϕ3 theory). In such a
case the presence of the linear term in δϕ is crucial. Note
that, e.g., in the PCM parametrized by the Lagrangian,

L¼F2Trð∂μU†Þð∂μUÞ; U¼ eði=FÞϕ; ϕ¼ϕaTa; ð9Þ

where U ∈ SUðNÞ transforms under the general element
ðVR; VLÞ of the chiral group SUðNÞ × SUðNÞ as

U → VRUV−1
L ; ð10Þ

there are no cubic vertices, and the matrix ϕ of N2 − 1
scalar fields transforms under the axial transformation
VL ¼ V−1

R ¼ 1þ iαaTa ≡ 1þ iα (with α infinitesimal) as

δαϕ ¼ 2Fα −
1

6F
fα;ϕ2g þ 1

3F
ϕαϕþOðϕ3; α2Þ: ð11Þ

The linear term is absent, and consequently the theory has
the Adler zero.
New soft theorem.—Let us assume a general two-

derivative Lagrangian for N fields fϕIgNI¼1 with a cubic
vertex,

L ¼ 1

2
∂μϕI∂μϕI þ

1

2
KIJK∂μϕI∂μϕJϕK þOðϕ4Þ; ð12Þ

with the sum over repeating indices tacitly assumed. Let the
transformation of the fields corresponding to spontaneously
broken symmetry contain, besides the constant term, also a
linear term:

δJϕI ¼ FJ
I þ

XN
K¼1

CJ
IKϕK þOðϕ2Þ: ð13Þ

The invariance of Eq. (12) under the symmetry (13)
requires nontrivial constraints between all coefficients;
namely,
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BJ
IK ≡ CJ

IK þ 1

2

XN
L¼1

KIKLFJ
L ð14Þ

must be antisymmetric, BJ
IK ¼ −BJ

KI. The Noether current
NJ

μ contains a quadratic term in the field expansion,

NJ
μ ¼

XN
I¼1

FJ
I ∂μϕI þ

XN
L;K¼1

KJ
LKϕK∂μϕL þOðϕ3Þ; ð15Þ

where KJ
IK depend on both parameters C and K:

KJ
IK ¼ CJ

IK þ
XN
M¼1

FJ
MKMIK: ð16Þ

At the tree level the matrix element hαjNJ
μjβi has additional

singular terms from inserting the current into external legs.
The remainder RJ

μ is not regular for p → 0; hence, the soft
limit of pμRJ

μ is nonzero and reduces to

lim
p→0

pμRJ
μ ¼ −

X
L∈α∪β

XN
K¼1

CJLKA
K;L
n−1ðα; βÞ; ð17Þ

where the AK;L
n−1ðα; βÞ is the (n − 1)point amplitude and the

particle ϕLðpLÞ is omitted and is replaced by particle
ϕKðpLÞ with momentum pL. The sum over L is over the
indices of all the particles in the in and out states. Therefore
the soft theorem has the form

lim
p→0

XN
I¼1

FJ
I AnðαþϕIðpÞ;βÞ¼

X
I∈α∪β

XN
K¼1

CJIKA
K;I
n−1ðα;βÞ: ð18Þ

Here the coefficient function CJIK is related to the original
parameters in the Lagrangian and transformation as

CJIK ¼ BJ
IK þ 1

2

XN
M¼1

FJ
MðKMIK − KMKIÞ ¼ −CJKI: ð19Þ

However, since the on-shell amplitudes are invariant
with respect to redefinition of the fields of the form
ϕI ¼ ϕ0

I þOðϕ02Þ, the constants CJIK do not depend on
such a reparametrization of the Lagrangian. Note that
several conditions must be satisfied in order to get a
nonzero right-hand side of Eq. (18).
(1) The coefficients CJIK must be nonzero; i.e., no

cancellation between parameters in Eqs. (12) and (13)
occurs.
(2) The theory needs to have both even and odd

amplitudes, as the amplitudes on the right-hand side have
(n − 1) external legs. Most sigma models do have only
even point amplitudes and, therefore, they preserve the
Adler zero.

Example of the sigma model.—As an explicit example
we consider a theory of two types of NGB fields: a vector of
multiple complex scalar fields Φþ

I , I ¼ 1;…; N − 1, and a
single real scalar χ. We use the parametrization

û ¼

0
B@ Φþ

Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Φ−·Φþ

F2

q
1
CA; ð20Þ

whereΦþ¼ðϕþ
1 ;ϕ

þ
2 ;…;ϕþ

N−1ÞT ,Φ− ¼ ½Φþ�†, and [·] stands
for the contraction over the I index. The Lagrangian of the
model is

L ¼ ð∂χÞ2
2

þF2ð∂μû† · ∂μûÞþ
iF0

2
∂μχð∂μû† · u − û† · ∂μûÞ

−
�
F2 − F2

0

2

�
ðû† · ∂μûÞð∂μû† · ûÞ: ð21Þ

It has two coupling constants F, F0 which play the role of
the decay constants of the NGB ϕþ

I and χ, respectively. The
model described by (21) is a different parametrization of
the SUðNÞ=SUðN − 1Þ nonlinear sigma model (3). The
relation with the original couplings is

F0 ¼
1

λ
ð1 − κÞ1=2; F ¼ 1ffiffiffi

2
p

λ
: ð22Þ

Let us briefly summarize limiting cases of our model (for
details and discussion, see Ref. [17]). The limit κ → 1 gives
F0 → 0 and χ decouples: we get the CPðN − 1Þ model.
The case λ → 0 with 1 − κ ¼ Oðλ2Þ means F → ∞, F0

finite, and the theory is free. The limit κ → 0, λ fixed means
F0 ¼

ffiffiffi
2

p
F, which gives the Oð2NÞ=Oð2N − 1Þ model.

Note that the model (21) satisfies the first condition for
the Adler zero violation as it involves the cubic term

L ∋ i
F0

2F2
∂μχð∂μϕ

−
I · ϕþ

I − ∂μϕ
þ
I · ϕ−

I Þ: ð23Þ

The Lagrangian is derivatively coupled in the χ field, and it
is therefore trivially invariant under the shift symmetry,

δχ ¼ a: ð24Þ
Since the cubic vertices can be eliminated by the repar-
ametrization Φ� ¼ Φ�0 exp½�iðF0=2FÞχ�, which does not
spoil this property, all scattering amplitudes have the
vanishing soft limit at pχ → 0; i.e., for χ the Adler zero
is valid. After this reparametrization, the Lagrangian is also
invariant under a more complicated transformation involv-
ing the linear terms,

δχ ¼ F0

2F2
ða−I · ϕþ

I þ aþI · ϕ−
I Þ þOððχ;ϕ�Þ2Þ;

δϕ�
I ¼ ∓ia�I

�
1 ∓ F0

2F2
χ

�
þOððχ;ϕ�Þ2Þ; ð25Þ
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where we introduced shift parameters a�I . Note that the
symmetry mixes the single scalar field χ and multiple
scalars ϕ�

I . Calculating CJIK in Eq. (19) we learn that CJIK is
nonzero. Furthermore, the model involves both odd and
even amplitudes, and, therefore, the scattering amplitude
does not vanish when the momentum of one of ϕ�

I is taken
soft. Because of the form of the Lagrangian (21), the only
allowed amplitudes have the same number of ϕþ and ϕ−

fields. If we think about ϕ� as charged scalars, this just
stands for charge conservation. Let us consider now the
scattering amplitude of 2n fields ϕ�

I and m fields χ, with
total M ¼ 2nþm external legs (see Fig. 1),

AMðfϕþ
Ii
g;fϕ−

Jj
g;fχgÞ

≡Aðϕþ
I1
ðp1Þ…ϕþ

In
ðpnÞ;ϕ−

J1
ðq1Þ…ϕ−

Jn
ðqnÞ;χðk1Þ…χðkmÞÞ:

ð26Þ

The soft theorem when p1 → 0 then reads

lim
p1→0

AM ¼ iF0

2F2

Xm
i¼1

AðiÞ
M−1 −

iF0

2F2

Xn
j¼1

δI1JjA
ðjÞ
M−1; ð27Þ

where the lower point amplitudes are defined as follows:

AðiÞ
M−1 ≡ Aðϕþ

I1
ðkiÞ…ϕþ

In
; fϕ−

Jj
g; χðk1Þ… dχðkiÞ…χðkmÞÞ;

AðjÞ
M−1 ≡ Aðϕþ

I2
…ϕþ

In
;ϕ−

J1
… dϕ−

Jj
ðqjÞ…ϕ−

Jn
; χðqjÞ; fχgÞ:

In the first case, AðiÞ
M−1, we start with AM defined in Eq. (26)

and remove particle χðkiÞ, then we replace the particle
ϕþ
I1
ðp1Þ by ϕþ

I1
ðkiÞ, i.e., just replace momenta keeping the

quantum numbers the same, and finally sum over all

particles χðkiÞ which are removed. In the case of AðjÞ
M−1,

we remove particle ϕþ
I1
completely as well as ϕ−

Jj
, and add a

new single scalar particle χðqjÞ with the momentum of
removed ϕ− particle. We show this graphically in Fig. 2
(left-hand picture corresponds to AðiÞ while the right-hand
side corresponds to AðjÞ), where the red color stands for
removed legs and blue for the legs added. For q1 → 0, the
soft theorem is the same except for the overall sign on the

right-hand side of Eq. (27). As discussed earlier, any
amplitude vanishes for kj → 0.
In the following, we focus now on the N ¼ 2 case which

describes only three fields: ϕ�, χ. To check the soft theorem
we first calculate all nonvanishing four-point amplitudes,

Atree
4 ðϕþ

1 ;ϕ
þ
2 ;ϕ

−
3 ;ϕ

−
4 Þ ¼

1

4F4
ð3F2

0 − 8F2Þs12;

Atree
4 ðϕþ

1 ;ϕ
−
2 ; χ3; χ4Þ ¼

F2
0

4F4
s12; ð28Þ

where sij ¼ ðpi þ pjÞ2 and we used the notation ϕþ
1 ≡

ϕþðp1Þ for simplicity. There is only one nontrivial five-
point amplitude:

Atree
5 ðϕþ

1 ;ϕ
þ
2 ;ϕ

−
3 ;ϕ

−
4 ;χ5Þ¼

iF0

F6

�
F2−F2

0

2

�
ðs12−s34Þ: ð29Þ

The soft theorem (27) for p1 → 0 predicts

lim
p1→0

Atree
5 ¼ iF0

2F2
Atree
4 ðϕþ

5 ;ϕ
þ
2 ;ϕ

−
3 ;ϕ

−
4 Þ

−
iF0

2F2
½Atree

4 ðϕþ
2 ;ϕ

−
3 ;χ4;χ5ÞþAtree

4 ðϕþ
2 ;ϕ

−
4 ;χ3;χ5Þ�

¼−
iF0

F6

�
F2−F2

0

2

�
s34; ð30Þ

in agreement with the direct calculation (29).
Amplitude reconstruction.—The knowledge of the soft

theorem (27) can be used as an input in the modified
version of the soft recursion relations introduced in Ref. [8].
We start with the momentum shift where all but two
particles are shifted in the way that allows us to access
the soft limit,

p̂i ¼ ð1 − aizÞpi; i ¼ 1;…n − 2; ð31Þ

p̂j ¼ pj þ zqj; j ¼ n − 1; n; ð32Þ

where the parameters ai and vectors qj must preserve on-
shell conditions and momentum conservation. For this shift
any scattering amplitude scales like Atree

n ðzÞ ¼ Oðz2Þ,
based on the momentum counting. We consider a residue
theorem for the meromorphic function GnðzÞ:

FIG. 1. Scattering amplitude AMðfϕþ
Ii
g; fϕ−

Jj
g; fχgÞ.

FIG. 2. Soft theorem for the amplitude AM involves two terms.
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GnðzÞ≡ Atree
n ðzÞ

z
Q

ið1 − aizÞ
: ð33Þ

We need at least three factors of ð1 − aizÞ in the denom-
inator to have vanishing residue at z → ∞; i.e.,

lim
R→∞

I
jzj¼R

dzGnðzÞ ¼ 0: ð34Þ

We can then express the residue at z ¼ 0, the original
amplitude Atree

n , as the sum of all other residues:

Atree
n ¼ −

X
k

Resz¼zkGnðzÞ −
X
i

Resz¼1=aiGnðzÞ: ð35Þ

The first sum on the right-hand side refers to factorization
poles from AnðzÞ; each term is equal to the product of
corresponding lower point amplitudes. The second sum is
over the soft limit poles when one of the p̂j → 0. In Ref. [8]
we considered only theories with vanishing soft limits, i.e.,
the second sum never contributed, but now the contribution
is nonzero and it is given by Eq. (18). The same concept
was also studied in Ref. [18].
As an example, we will reconstruct the five-point ampli-

tude from the N ¼ 2 model, Atree
5 ðϕþ

1 ;ϕ
þ
2 ;ϕ

−
3 ;ϕ

−
4 ; χÞ.

We shift legs 1, 2, and 5 as Eq. (31) and 3 and 4 as
Eq. (32). The amplitude does not have any factorization
poles, and the only poles of G5ðzÞ are soft poles. As the
shifted amplitude vanishes for p̂5 → 0, the only contribu-
tions come from p̂1 or p̂2 → 0 soft limits. The residue at
z ¼ 1=a1 then reads

Resz¼1=a1G5ðzÞ ¼ −
cA5jtreez¼1=a1

ð1 − a2=a1Þð1 − a5=a1Þ
: ð36Þ

The value of the shifted amplitudecA5jtreez¼1=a1
can be obtained

from the soft theorem (30) by considering the shifted
kinematics:

p̂1 ¼ 0; p̂2 ¼
�
a1 − a2

a1

�
p2; p̂5 ¼

�
a1 − a5

a1

�
p5:

Plugging the result into Eq. (36), we get

Resz¼1=a1G5ðzÞ ¼
iF0

F6

�
F2 − F2

0

2

�
s25: ð37Þ

Similarly, the residue at the pole z ¼ 1=a2 for p̂2 ¼ 0 gives

Resz¼1=a2G5ðzÞ ¼
iF0

F6

�
F2 − F2

0

2

�
s15; ð38Þ

and after using the momentum conservation the sum of
Eqs. (37) and (38) reproduces the formula (29).

Uniqueness of the model.—In the last part we turn the
procedure around, and we will reconstruct our nonlinear
sigma model for N ¼ 2 as a unique theory which satisfies a
soft theorem of the type Eq. (18). Following the logic of
Ref. [9], we start with the ansatz for the amplitude of three
types of scalar fields ϕ�, χ in terms of kinematical
invariants and impose the soft theorem of the general type,

lim
p1→0

An ¼
X
i

ciA
ðiÞ
n−1; ð39Þ

as a constraint. If the right-hand side is zero, we deal with
the standard Adler theorem (for more details, see Ref. [10]).
To go beyond the standard situation we demand a nonzero
right-hand side when shifting charged particles, and keep
the Adler zero only for the neutral χ. We went up to the
seven-point amplitudes to check that the unique answer is
our model, U(1)-fibrated CP(1), and the general ci con-
stants are set in accordance with Eq. (27).
The natural question is if there are more theories of this

type for more than three scalar fields beyond our explicit
example (21). This is an open question, and we believe that
this procedure is a very useful tool to address the problem
and potentially find new theories with nontrivial soft
theorems. In principle, we can also look at amplitudes
for theories with only two types of scalar fields. In the
upcoming work [17] we will prove that for any such theory,
under the assumption that the soft theorem (18) with FJ

I ¼
FδJI ≠ 0 is valid, and assuming nonvanishing four-point
amplitude, all the odd-particle amplitudes have to vanish.
Therefore all Goldstone-boson amplitudes must necessarily
have the Adler zero. This supports the statement that the
only nonlinear sigma model for two scalars are CPð1Þ ¼
Oð3Þ=Oð2Þ and Oð1; 2Þ=Oð2Þ.
Conclusion.—In this Letter we found a new soft theorem

for the Goldstone-boson amplitudes. Using the example of
SUðNÞ=SUðN − 1Þ nonlinear sigma models, we showed
that generically the amplitudes do not vanish in the soft
limit but rather reduce to a recursion. Explicit expressions
are presented in the simplest N ¼ 2 case which describes a
pair of charged NGBs and a single neutral NGB.We proved
that this theory can be uniquely fixed from the tree-level S
matrix if we impose the soft theorem as a constraint.
Consequently, we derived the recursion relations to recon-
struct all tree-level amplitudes.
Our work opens new avenues in studying NLSMs, and

more generally EFTs using nonvanishing soft limits of
scattering amplitudes. In Ref. [17] we will generalize this
work, and use the soft theorems as the theoretical tool to
explore larger space of theories based on properties of their
scattering amplitudes. The exceptional EFTs also appear in
the Cachazo-He-Yuan formula [19], ambitwistor strings
[20], and the color-kinematics duality [21], while the
nontrivial soft limits have been encountered in the calcu-
lation of the leading nonzero term in the soft limit of SU(N)
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NLSM amplitudes using the Cachazo-He-Yuan formalism
[22]. In Ref. [23] the authors studied the amplitudes of
dilaton, and later in Refs. [24–26] the subleading soft
theorem for such amplitudes was derived. The soft theorem
constraints on EFT of N ¼ 4 Super Yang-Mills theory
(SYM) on the Coulomb branch for both dilaton and the
Goldstone of R-symmetry breaking was studied in
Ref. [27], and the nonvanishing soft theorem of string
dilation was found in Ref. [28]. It would be fascinating to
explore how these results can be understood using our
approach.
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